Skip to content

Latest commit

 

History

History
595 lines (435 loc) · 23.3 KB

CHANGES.rst

File metadata and controls

595 lines (435 loc) · 23.3 KB

Changelog

Plateau 4.4.0 (2024-05-23)

  • Improve support for Dask's query planner.
  • Support column projection when using dask-expr's from_map.
  • Include pyarrow 15.0.0 in CI
  • Fix tests for dask 2024.1.1
  • Account for breaking changes in nightly builds of Pandas which would have caused issues upon the release of Pandas 3.

Plateau 4.3.0 (2023-12-21)

  • Add is distinct from predicate operation. This follows the behaviour of the SQL operation of the same name, i.e. it treats two null values as the same. This is also the current behaviour of the != operation.
  • Deprecates the current behaviour of the != predicate operation. From 5.0.0 onwards, the new behaviour will be the same as its SQL counterpart, i.e. it will filter out null/missing values. Where the current behaviour of != is needed, is distinct from should be used instead.
  • Include pyarrow 14.0.1 in CI

Plateau 4.2.2 (2023-11-06)

  • Include Python 3.12 in CI
  • Migrate setup.cfg to pyproject.toml completely
  • Port to ruff, remove isort, black, and flake8

Plateau 4.2.1 (2023-10-31)

  • Add support for pandas 2.1
  • Fix a bug to do with timestamp dtype conversion
  • Add timestamp unit coercion as Plateau currently only supports nanosecond units on timestamps

Plateau 4.2.0 (2023-10-10)

  • Support pandas 2
  • Test pyarrow 12 and 13
  • Prevent dask from casting all object dtypes to strings
  • Remove tests for pyarrow<=3 as they fail with pandas>=2
  • Adds support for dask 2023.9.2

Plateau 4.1.5 (2023-03-14)

  • Enable dask column projection.
  • Test pyarrow 11
  • Remove usage of pkg_resources.

Plateau 4.1.4 (2022-12-14)

  • We no longer package the tests directory.
  • Test pyarrow 10 and Python 3.11, pandas 1.5

Plateau 4.1.3 (2022-10-24)

  • Patch to load partition with only nulls as categorical (#55)

Plateau 4.1.2 (2022-10-20)

  • Removed upper-bound pin in pyarrow version dependency

Plateau 4.1.1 (2022-10-19)

  • Fix usage of setuptools_scm

Plateau 4.1.0 (2022-10-19)

  • Support for pyarrow 5, 6, 7, 8, 9
  • Support for numpy 1.23
  • Support for dask>=2022.4.2
  • Support Python 3.8-3.10
  • Replaced simplekv and storefact usages with minimalkv

Plateau 4.0.4 (2022-03-17)

  • Fork and rename the project as plateau (flat files, flat land).
  • Fixed a bug where sometimes data partitions in a plateau dataset would be read in a non-deterministic order among Python executions (#23).

Kartothek 4.0.3 (2021-06-10)

  • Pin dask to not use 2021.5.1 and 2020.6.0 (#475)

Kartothek 4.0.2 (2021-06-07)

  • Fix a bug in MetaPartition._reconstruct_index_columns that would raise an IndexError when loading few columns of a dataset with many primary indices.

Kartothek 4.0.1 (2021-04-13)

  • Fixed dataset corruption after updates when table names other than "table" are used (#445).

Kartothek 4.0.0 (2021-03-17)

This is a major release of kartothek with breaking API changes.

  • Removal of complex user input (see gh427)
  • Removal of multi table feature
  • Removal of kartothek.io.merge module
  • class kartothek.core.dataset.DatasetMetadata now has an attribute called schema which replaces the previous attribute table_meta and returns only a single schema
  • All outputs which previously returned a sequence of dictionaries where each key-value pair would correspond to a table-data pair now returns only one :class:`pandas.DataFrame`
  • All read pipelines will now automatically infer the table to read such that it is no longer necessary to provide table or table_name as an input argument
  • All writing pipelines which previously supported a complex user input type now expose an argument table_name which can be used to continue usage of legacy datasets (i.e. datasets with an intrinsic, non-trivial table name). This usage is discouraged and we recommend users to migrate to a default table name (i.e. leave it None / table)
  • All pipelines which previously accepted an argument tables to select the subset of tables to load no longer accept this keyword. Instead the to-be-loaded table will be inferred
  • Trying to read a multi-tabled dataset will now cause an exception telling users that this is no longer supported with kartothek 4.0
  • The dict schema for kartothek.core.dataset.DatasetMetadataBase.to_dict and kartothek.core.dataset.DatasetMetadata.from_dict changed replacing a dictionary in table_meta with the simple schema
  • All pipeline arguments which previously accepted a dictionary of sequences to describe a table specific subset of columns now accept plain sequences (e.g. columns, categoricals)
  • Remove the following list of deprecated arguments for io pipelines * label_filter * central_partition_metadata * load_dynamic_metadata * load_dataset_metadata * concat_partitions_on_primary_index
  • Remove output_dataset_uuid and df_serializer from kartothek.io.eager.commit_dataset since these arguments didn't have any effect
  • Remove metadata, df_serializer, overwrite, metadata_merger from kartothek.io.eager.write_single_partition
  • kartothek.io.eager.store_dataframes_as_dataset now requires a list as an input
  • Default value for argument date_as_object is now universally set to True. The behaviour for False will be deprecated and removed in the next major release
  • No longer allow to pass delete_scope as a delayed object to kartothek.io.dask.dataframe.update_dataset_from_ddf
  • kartothek.io.dask.dataframe.update_dataset_from_ddf and :func:kartothek.io.dask.dataframe.store_dataset_from_ddf now return a dd.core.Scalar object. This enables all dask.DataFrame graph optimizations by default.
  • Remove argument table_name from kartothek.io.dask.dataframe.collect_dataset_metadata

Version 3.20.0 (2021-03-15)

This will be the final release in the 3.X series. Please ensure your existing codebase does not raise any DeprecationWarning from kartothek and migrate your import paths ahead of time to the new kartothek.api modules to ensure a smooth migration to 4.X.

  • Introduce kartothek.api as the public definition of the API. See also :doc:`versioning`.
  • Introduce DatasetMetadataBase.schema to prepare deprecation of table_meta
  • kartothek.io.eager.read_dataset_as_dataframes and kartothek.io.iter.read_dataset_as_dataframes__iterator now correctly return categoricals as requested for misaligned categories.

Version 3.19.1 (2021-02-24)

  • Allow pyarrow==3 as a dependency.
  • Fix a bug in kartothek.io_components.utils.align_categories for dataframes with missings and of non-categorical dtype.
  • Fix an issue with the cube index validation introduced in v3.19.0 (#413).

Version 3.19.0 (2021-02-12)

  • Fix an issue where updates on cubes or updates on datatsets using dask.dataframe might not update all secondary indices, resulting in a corrupt state after the update
  • Expose compression type and row group chunk size in Cube interface via optional parameter of type kartothek.serialization.ParquetSerializer.
  • Add retries to kartothek.serialization._parquet.ParquetSerializer.restore_dataframe IOErrors on long running ktk + dask tasks have been observed. Until the root cause is fixed, the serialization is retried to gain more stability.

Version 3.18.0 (2021-01-25)

  • Add cube.suppress_index_on to switch off the default index creation for dimension columns
  • Fixed the import issue of zstd module for kartothek.core _zmsgpack.
  • Fix a bug in kartothek.io_components.read.dispatch_metapartitions_from_factory where dispatch_by=[] would be treated like dispatch_by=None, not merging all dataset partitions into a single partitions.

Version 3.17.3 (2020-12-04)

  • Allow pyarrow==2 as a dependency.

Version 3.17.2 (2020-12-01)

  • #378 Improve logging information for potential buffer serialization errors

Version 3.17.1 (2020-11-24)

Bugfixes

  • Fix GitHub #375 by loosening checks of the supplied store argument

Version 3.17.0 (2020-11-23)

Improvements

  • Improve performance for "in" predicate literals using long object lists as values
  • kartothek.io.eager.commit_dataset now allows to modify the user metadata without adding new data.

Bugfixes

  • Fix an issue where kartothek.io.dask.dataframe.collect_dataset_metadata would return improper rowgroup statistics
  • Fix an issue where kartothek.io.dask.dataframe.collect_dataset_metadata would execute get_parquet_metadata at graph construction time
  • Fix a bug in kartothek.io.eager_cube.remove_partitions where all partitions were removed instead of non at all.
  • Fix a bug in kartothek.core.dataset.DatasetMetadataBase.get_indices_as_dataframe which would raise an IndexError if indices were empty or had not been loaded

Version 3.16.0 (2020-09-29)

New functionality

  • Allow filtering of nans using "==", "!=" and "in" operators

Bugfixes

  • Fix a regression which would not allow the usage of non serializable stores even when using factories

Version 3.15.1 (2020-09-28)

  • Fix a packaging issue where typing_extensions was not properly specified as a requirement for python versions below 3.8

Version 3.15.0 (2020-09-28)

New functionality

  • Add kartothek.io.dask.dataframe.store_dataset_from_ddf to offer write support of a dask dataframe without update support. This forbids or explicitly allows overwrites and does not update existing datasets.
  • The sort_partitions_by feature now supports multiple columns. While this has only marginal effect for predicate pushdown, it may be used to improve the parquet compression.
  • build_cube_from_dataframe now supports the shuffle methods offered by kartothek.io.dask.dataframe.store_dataset_from_ddf and kartothek.io.dask.dataframe.update_dataset_from_ddf but writes the output in the cube format

Improvements

  • Reduce memory consumption during index write.
  • Allow simplekv stores and storefact URLs to be passed explicitly as input for the store arguments

Version 3.14.0 (2020-08-27)

New functionality

  • Add hash_dataset functionality

Improvements

  • Expand pandas version pin to include 1.1.X
  • Expand pyarrow version pin to include 1.x
  • Large addition to documentation for multi dataset handling (Kartothek Cubes)

Version 3.13.1 (2020-08-04)

  • Fix evaluation of "OR"-connected predicates (#295)

Version 3.13.0 (2020-07-30)

Improvements

  • Update timestamp related code into Ktk Discover Cube functionality.
  • Support backward compatibility to old cubes and fix for cli entry point.

Version 3.12.0 (2020-07-23)

New functionality

  • Introduction of cube Functionality which is made with multiple Kartothek datasets.
  • Basic Features - Extend, Query, Remove(Partitions), Delete (can delete entire datasets/cube), API, CLI, Core and IO features.
  • Advanced Features - Multi-Dataset with Single Table, Explicit physical Partitions, Seed based join system.

Version 3.11.0 (2020-07-15)

New functionality

  • Add kartothek.io_components.metapartition.MetaPartition.get_parquet_metadata and kartothek.io.dask.dataframe.collect_dataset_metadata, enabling users to collect information about the Parquet metadata of a dataset (#306)

Bug fixes

  • Performance of dataset update with delete_scope significantly improved for datasets with many partitions (#308)

Version 3.10.0 (2020-07-02)

Improvements

  • Dispatch performance improved for large datasets including metadata
  • Introduction of dispatch_metadata kwarg to metapartitions read pipelines to allow for transition for future breaking release.

Bug fixes

  • Ensure that the empty (sentinel) DataFrame used in kartothek.io.eager.read_table` also has the correct behaviour when using the categoricals argument.

Breaking changes in io_components.read

  • The dispatch_metapartitions and dispatch_metapartitions_from_factory will no longer attach index and metadata information to the created MP instances, unless explicitly requested.

Version 3.9.0 (2020-06-03)

Improvements

  • Arrow 0.17.X support
  • Significant performance improvements for shuffle operations in kartothek.io.dask.dataframe.update_dataset_from_ddf for large dask.DataFrames with many payload columns by using in-memory compression during the shuffle operation.
  • Allow calling kartothek.io.dask.dataframe.update_dataset_from_ddf without partition_on when shuffle=True.
  • kartothek.io.dask.dataframe.read_dataset_as_ddf supports kwarg dispatch_by to control the internal partitioning structure when creating a dataframe.
  • kartothek.io.dask.dataframe.read_dataset_as_ddf and kartothek.io.dask.dataframe.update_dataset_from_ddf now allow the keyword table to be optional, using the default SINGLE_TABLE identifier. (recommended since the multi table dataset support is in sunset).

Version 3.8.2 (2020-04-09)

Improvements

  • Read performance improved for, especially for partitioned datasets and queries with empty payload columns.

Bug fixes

  • GH262: Raise an exception when trying to partition on a column with null values to prevent silent data loss
  • Fix multiple index creation issues (cutting data, crashing) for uint data
  • Fix index update issues for some types resulting in TypeError: Trying to update an index with different types... messages.
  • Fix issues where index creation with empty partitions can lead to ValueError: Trying to create non-typesafe index

Version 3.8.1 (2020-03-20)

Improvements

  • Only fix column odering when restoring DataFrame if the ordering is incorrect.

Bug fixes

  • GH248 Fix an issue causing a ValueError to be raised when using dask_index_on on non-integer columns
  • GH255 Fix an issue causing the python interpreter to shut down when reading an empty file (see also https://issues.apache.org/jira/browse/ARROW-8142)

Version 3.8.0 (2020-03-12)

Improvements

  • Add keyword argument dask_index_on which reconstructs a dask index from an kartothek index when loading the dataset
  • Add method kartothek.core.index.IndexBase.observed_values which returns an array of all observed values of the index column
  • Updated and improved documentation w.r.t. guides and API documentation

Bug fixes

  • GH227 Fix a Type error when loading categorical data in dask without specifying it explicitly
  • No longer trigger the SettingWithCopyWarning when using bucketing
  • GH228 Fix an issue where empty header creation from a pyarrow schema would not normalize the schema which causes schema violations during update.
  • Fix an issue where kartothek.io.eager.create_empty_dataset_header would not accept a store factory.

Version 3.7.0 (2020-02-12)

Improvements

  • Support for pyarrow 0.16.0
  • Decrease scheduling overhead for dask based pipelines
  • Performance improvements for categorical data when using pyarrow>=0.15.0
  • Dask is now able to calculate better size estimates for the following classes:
    • kartothek.core.dataset.DatasetMetadata
    • kartothek.core.factory.DatasetFactory
    • kartothek.io_components.metapartition.MetaPartition
    • kartothek.core.index.ExplicitSecondaryIndex
    • kartothek.core.index.PartitionIndex
    • kartothek.core.partition.Partition
    • kartothek.core.common_metadata.SchemaWrapper

Version 3.6.2 (2019-12-17)

Improvements

  • Add more explicit typing to kartothek.io.eager.

Bug fixes

  • Fix an issue where kartothek.io.dask.dataframe.update_dataset_from_ddf would create a column named "_KTK_HASH_BUCKET" in the dataset

Version 3.6.1 (2019-12-11)

Bug fixes

  • Fix a regression introduced in 3.5.0 where predicates which allow multiple values for a field would generate duplicates

Version 3.6.0 (2019-12-03)

New functionality

  • The partition on shuffle algorithm in kartothek.io.dask.dataframe.update_dataset_from_ddf now supports producing deterministic buckets based on hashed input data.

Bug fixes

  • Fix addition of bogus index columns to Parquet files when using sort_partitions_by.
  • Fix bug where partition_on in write path drops empty DataFrames and can lead to datasets without tables.

Version 3.5.1 (2019-10-25)

  • Fix potential pyarrow.lib.ArrowNotImplementedError when trying to store or pickle empty kartothek.core.index.ExplicitSecondaryIndex objects
  • Fix pickling of kartothek.core.index.ExplicitSecondaryIndex unloaded in dispatch_metapartitions_from_factory

Version 3.5.0 (2019-10-21)

New functionality

  • Add support for pyarrow 0.15.0
  • Additional functions in kartothek.serialization module for dealing with predicates * kartothek.serialization.check_predicates * kartothek.serialization.filter_predicates_by_column * kartothek.serialization.columns_in_predicates
  • Added available types for type annotation when dealing with predicates * kartothek.serialization.PredicatesType * kartothek.serialization.ConjunctionType * kartothek.serialization.LiteralType
  • Make kartothek.io.*read_table* methods use default table name if unspecified
  • MetaPartition.parse_input_to_metapartition accepts dicts and list of tuples equivalents as obj input
  • Added secondary_indices as a default argument to the write pipelines

Bug fixes

  • Input to normalize_args is properly normalized to list
  • MetaPartition.load_dataframes now raises if table in columns argument doesn't exist
  • require urlquote>=1.1.0 (where urlquote.quoting was introduced)
  • Improve performance for some cases where predicates are used with the in operator.
  • Correctly preserve :class:kartothek.core.index.ExplicitSecondaryIndex dtype when index is empty
  • Fixed DeprecationWarning in pandas CategoricalDtype
  • Fixed broken docstring for store_dataframes_as_dataset
  • Internal operations no longer perform schema validations. This will improve performance for batched partition operations (e.g. partition_on) but will defer the validation in case of inconsistencies to the final commit. Exception messages will be less verbose in these cases as before.
  • Fix an issue where an empty dataframe of a partition in a multi-table dataset would raise a schema validation exception
  • Fix an issue where the dispatch_by keyword would disable partition pruning
  • Creating dataset with non existing columns as explicit index to raise a ValueError

Breaking changes

  • Remove support for pyarrow < 0.13.0
  • Move the docs module from io_components to core

Version 3.4.0 (2019-09-17)

  • Add support for pyarrow 0.14.1
  • Use urlquote for faster quoting/unquoting

Version 3.3.0 (2019-08-15)

  • Fix rejection of bool predicates in kartothek.serialization.filter_array_like when bool columns contains None
  • Streamline behavior of store_dataset_from_ddf when passing empty ddf.
  • Fix an issue where a segmentation fault may be raised when comparing MetaPartition instances
  • Expose a date_as_object flag in kartothek.core.index.as_flat_series

Version 3.2.0 (2019-07-25)

  • Fix gh:66 where predicate pushdown may evalute false results if evaluated using improper types. The behavior now is to raise in these situations.
  • Predicate pushdown and kartothek.serialization.filter_array_like will now properly handle pandas Categoricals.
  • Add kartothek.io.dask.bag.read_dataset_as_dataframe_bag
  • Add kartothek.io.dask.bag.read_dataset_as_metapartitions_bag

Version 3.1.1 (2019-07-12)

  • make kartothek.io.dask.bag.build_dataset_indices__bag more efficient
  • make kartothek.io.eager.build_dataset_indices more efficient
  • fix pseudo-private kartothek.io_components.read.dispatch_metapartitions handling of concat_partitions_on_primary_index
  • fix internal errors if querying (e.g. via kartothek.io.eager.read_dataset_as_dataframes) with datetime.date predicates that use the dataset index; this affects all code paths using kartothek.io_components.metapartition.MetaPartition.load_dataframes

Version 3.1.0 (2019-07-10)

  • fix getargspec DeprecationWarning

  • fix FutureWarning in filter_array_like

  • remove funcsigs requirement

  • Implement reference io.eager implementation, adding the functions:

    • kartothek.io.eager.garbage_collect_dataset
    • kartothek.io.eager.build_dataset_indices
    • kartothek.io.eager.update_dataset_from_dataframes
  • fix _apply_partition_key_predicates FutureWarning

  • serialize kartothek.core.index.ExplicitSecondaryIndex to parquet

  • improve messages for schema violation errors

  • Ensure binary column names are read as type str:

    • Ensure dataframe columns are of type str in kartothek.core.common_metadata.empty_dataframe_from_schema
    • Testing: create kartothek.io.testing.read.test_binary_column_metadata which checks column names stored as bytes objects are read as type str
  • fix issue where it was possible to add an index to an existing dataset by using update functions and partition indices (JDASoftwareGroup/kartothek#16).

  • fix issue where unreferenced files were not being removed when deleting an entire dataset

  • support nested kartothek.io_components.metapartition.MetaPartition in kartothek.io_components.metapartition.MetaPartition.add_metapartition. This fixes issue JDASoftwareGroup/kartothek#40 .

  • Add kartothek.io.dask.bag.build_dataset_indices__bag

  • Return dask.bag.Item object from kartothek.io.dask.bag.store_bag_as_dataset to avoid misoptimization

Breaking:

  • categorical normalization was moved from kartothek.core.common_metadata.make_meta to kartothek.core.common_metadata.normalize_type.
  • kartothek.core.common_metadata.SchemaWrapper.origin is now a set of of strings instead of a single string
  • Partition.from_v2_dict was removed, use kartothek.core.partition.Partition.from_dict instead

Version 3.0.0 (2019-05-02)

  • Initial public release