Skip to content

Latest commit

 

History

History

DNR

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deferred Neural Rendering Training

Pipeline

Once the data is preprocessed, we can now train the model and infer from it. Instructions are given below:

Training

python train.py --data <data_dir> --checkpoint <ckpt_dir> --logdir <log_dir> --epoch 100  \
	--load <lif_ckpt_load_path> --load_step <lif_ckpt_epoch> --mask_load <mask_ckpt_load_path> --mask_load_step <mask_ckpt_epoch>

You can tweak other parameters like batch_size, etc in config.py

Inference

  • For real scenes
python render_network.py --data <data_dir> --lif_checkpoint <lif_ckpt_path> --mask_checkpoint <mask_ckpt_path> --output_dir <output_path> --material <input_material>

This implementation is an unofficial version of Zp Zhou. The code can be found here