Issues with batchloader #230
Unanswered
raphaelmourad
asked this question in
Q&A
Replies: 2 comments 1 reply
-
Hi, One way to circumvent this kind of issues is to use the more modern model subclassing approach, give it a spin :) Cheers |
Beta Was this translation helpful? Give feedback.
0 replies
-
Ok I got it using reshaping with Lambda layer using keras backend! |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
Hello Daniele,
I am trying to use batchLoader because I have a set of graphs with the same dimension.
But as far as I tried I could not make it work when I use model.fit().
Note that I cannot use your ready to use fonction spektral.models.gcn.GCN(), since I do some feature engineering with classical convolution within my model.
I could easily make my own dataset using examples you provided (thanks for that):
[Graph(n_nodes=5, n_node_features=200, n_edge_features=None, n_labels=5),
Graph(n_nodes=5, n_node_features=200, n_edge_features=None, n_labels=5),
Graph(n_nodes=5, n_node_features=200, n_edge_features=None, n_labels=5),
Graph(n_nodes=5, n_node_features=200, n_edge_features=None, n_labels=5),
Graph(n_nodes=5, n_node_features=200, n_edge_features=None, n_labels=5),
.................................]
I built batchLoaders from the dataset containing many graphs:
Here is my data from the loader. For each batch, I have a matrix of 5 samples and 200 features, and a graph of 5x5 as inputs, as output the node class (5 binary values, one for each sample).
[[[1 2 2 2 3 2 1 3 1 3 3 0 1 1 1 0 1 3 2 0 2 1 1 0 3 2 1 2 3 2 0 2 1 0 3
2 3 2 3 0 3 2 1 0 2 2 1 0 3 0 3 0 3 2 0 0 1 0 3 2 3 2 3 0 3 2 1 3 1 0
3 0 3 3 1 0 0 1 0 3 2 2 0 3 0 3 1 0 0 1 2 1 0 1 0 3 0 2 0 3 0 0 1 0 1
0 3 0 1 2 0 0 2 3 2 2 3 3 3 2 0 0 3 0 0 2 0 0 0 1 2 0 0 0 2 0 1 3 3 2
1 0 1 0 2 2 1 3 1 0 2 2 3 2 3 3 3 2 0 2 1 1 2 3 3 2 2 1 1 3 1 1 0 2 3
3 2 2 3 2 2 1 0 1 3 2 3 3 3 2 2 2 2 0 2 0 2 2 2 3]
[3 3 0 0 1 0 3 0 0 2 1 2 3 2 0 1 0 3 3 0 0 0 1 1 0 0 1 1 1 0 0 3 3 1 0
0 2 3 0 3 2 3 0 1 3 2 3 3 1 1 1 1 3 0 3 0 3 2 2 0 2 0 0 0 0 0 2 1 0 0
1 0 3 3 3 0 2 0 2 3 2 0 0 0 3 3 3 2 0 0 0 3 2 3 3 3 3 0 3 2 1 1 1 3 3
2 3 3 0 2 1 0 3 0 3 0 3 3 0 3 3 3 3 2 0 0 2 1 0 3 2 0 0 0 3 0 3 1 0 1
3 3 1 1 0 0 0 0 0 3 1 0 3 3 0 0 2 3 2 0 2 2 3 0 3 3 1 1 0 0 2 2 1 1 3
3 3 3 3 2 2 0 2 2 1 1 3 0 1 2 3 1 3 2 0 1 1 3 1 3]
[3 2 1 1 3 1 3 1 0 3 0 1 0 3 0 1 0 3 2 0 2 1 0 3 2 1 0 1 0 3 2 1 0 3 2
1 0 1 0 1 0 3 2 0 0 1 0 3 3 1 0 3 0 3 2 1 3 1 0 3 0 1 3 1 0 0 1 0 3 2
2 1 3 0 1 0 2 0 3 0 1 0 1 0 3 0 1 0 3 0 1 0 3 0 3 2 0 0 1 3 1 0 1 0 3
1 1 2 3 2 2 3 0 2 3 3 3 2 0 0 3 2 0 2 2 0 0 1 2 0 0 3 2 2 1 1 3 2 1 0
1 0 2 2 1 3 1 0 2 2 3 2 3 3 3 2 0 2 1 1 2 3 3 2 2 1 1 3 1 1 0 2 3 1 2
2 3 2 2 1 0 1 3 2 3 3 3 2 2 2 2 0 2 0 3 0 2 3 2 0]
[3 3 3 3 1 1 3 3 3 2 3 3 1 0 3 3 3 2 3 3 3 3 2 3 2 3 1 3 3 0 0 0 3 3 1
3 0 1 0 3 2 2 0 0 2 3 2 0 0 0 3 1 0 3 2 2 1 0 3 3 3 2 2 1 0 2 0 0 0 0
0 3 1 0 0 0 0 2 0 0 2 0 3 3 0 0 1 0 3 3 3 1 2 3 2 2 3 0 1 0 3 2 0 0 0
0 1 3 0 3 1 0 1 0 3 3 0 3 1 0 0 0 3 3 1 3 2 2 3 2 3 1 3 2 3 0 0 0 3 0
0 0 2 3 3 3 3 0 3 3 2 1 0 0 1 0 1 0 2 1 1 0 0 2 1 3 1 0 1 3 1 0 3 3 1
0 3 2 3 0 3 3 2 3 1 3 2 3 2 2 1 3 2 1 3 3 3 1 0 3]
[0 1 0 0 0 2 3 3 3 3 2 2 1 1 0 0 1 3 0 2 3 3 0 3 2 2 0 0 1 0 3 1 1 3 3
2 0 3 2 0 0 0 3 0 1 3 3 1 1 1 1 1 1 1 1 3 1 1 1 3 3 1 3 3 1 0 1 3 1 3
1 3 3 3 0 2 2 0 3 2 3 2 0 3 2 0 1 0 0 3 2 2 0 3 2 2 1 1 3 1 1 3 1 3 0
3 2 0 1 1 3 1 0 1 0 2 0 2 0 0 2 1 0 0 2 3 1 3 0 3 1 0 3 0 3 3 2 2 2 1
2 0 1 0 2 2 3 3 1 3 1 0 3 2 2 1 3 3 3 2 2 3 2 0 2 0 1 3 3 2 0 1 0 2 0
1 0 3 0 1 3 3 0 3 2 2 2 3 3 3 3 2 2 0 0 2 2 2 0 2]]]
[[[0.2 0.4472136 0.4472136 0.4472136 0.4472136]
[0. 1. 0. 0. 0. ]
[0. 0. 1. 0. 0. ]
[0. 0. 0. 1. 0. ]
[0. 0. 0. 0. 1. ]]]
[[1 0 0 0 0]]
Here is my model:
seqlen=200
N=5
When I run:
I get this message (see bellow). I understand this is due to the fact that the loader gives me a batch (of size 1), thus I have (5, 200, 1) as input feature node matrix. But even after trying to change many times my code, I could not make it work.
Epoch 1/200
WARNING:tensorflow:Model was constructed with shape (None, 200) for input KerasTensor(type_spec=TensorSpec(shape=(None, 200), dtype=tf.float32, name='input_56'), name='input_56', description="created by layer 'input_56'"), but it was called on an input with incompatible shape (None, None, None).
WARNING:tensorflow:Model was constructed with shape (None, 5) for input KerasTensor(type_spec=TensorSpec(shape=(None, 5), dtype=tf.float32, name='input_57'), name='input_57', description="created by layer 'input_57'"), but it was called on an input with incompatible shape (None, None, None).
ValueError Traceback (most recent call last)
in
----> 1 history=model.fit(
2 loader_tr.load(),
3 steps_per_epoch=loader_tr.steps_per_epoch,
4 validation_data=loader_va.load(),
5 validation_steps=loader_va.steps_per_epoch,
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1098 _r=1):
1099 callbacks.on_train_batch_begin(step)
-> 1100 tmp_logs = self.train_function(iterator)
1101 if data_handler.should_sync:
1102 context.async_wait()
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in call(self, *args, **kwds)
826 tracing_count = self.experimental_get_tracing_count()
827 with trace.Trace(self._name) as tm:
--> 828 result = self._call(*args, **kwds)
829 compiler = "xla" if self._experimental_compile else "nonXla"
830 new_tracing_count = self.experimental_get_tracing_count()
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
869 # This is the first call of call, so we have to initialize.
870 initializers = []
--> 871 self._initialize(args, kwds, add_initializers_to=initializers)
872 finally:
873 # At this point we know that the initialization is complete (or less
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
723 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
724 self._concrete_stateful_fn = (
--> 725 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
726 *args, **kwds))
727
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2967 args, kwargs = None, None
2968 with self._lock:
-> 2969 graph_function, _ = self._maybe_define_function(args, kwargs)
2970 return graph_function
2971
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
3359
3360 self._function_cache.missed.add(call_context_key)
-> 3361 graph_function = self._create_graph_function(args, kwargs)
3362 self._function_cache.primary[cache_key] = graph_function
3363
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3194 arg_names = base_arg_names + missing_arg_names
3195 graph_function = ConcreteFunction(
-> 3196 func_graph_module.func_graph_from_py_func(
3197 self._name,
3198 self._python_function,
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
988 _, original_func = tf_decorator.unwrap(python_func)
989
--> 990 func_outputs = python_func(*func_args, **func_kwargs)
991
992 # invariant:
func_outputs
contains only Tensors, CompositeTensors,~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
632 xla_context.Exit()
633 else:
--> 634 out = weak_wrapped_fn().wrapped(*args, **kwds)
635 return out
636
~/anaconda3/envs/deeplearning/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
975 except Exception as e: # pylint:disable=broad-except
976 if hasattr(e, "ag_error_metadata"):
--> 977 raise e.ag_error_metadata.to_exception(e)
978 else:
979 raise
ValueError: in user code:
Beta Was this translation helpful? Give feedback.
All reactions