-
Notifications
You must be signed in to change notification settings - Fork 344
/
Copy pathtrain_ALL_CNN.py
132 lines (115 loc) · 5.18 KB
/
train_ALL_CNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
# @Author : bamtercelboo
# @Datetime : 2018/07/19 22:35
# @File : train_ALL_CNN.py
# @Last Modify Time : 2018/07/19 22:35
# @Contact : bamtercelboo@{gmail.com, 163.com}
import os
import sys
import torch
import torch.autograd as autograd
import torch.nn.functional as F
import torch.nn.utils as utils
import torch.optim.lr_scheduler as lr_scheduler
import shutil
import random
from DataUtils.Common import seed_num
torch.manual_seed(seed_num)
random.seed(seed_num)
def train(train_iter, dev_iter, test_iter, model, args):
if args.cuda:
model.cuda()
if args.Adam is True:
print("Adam Training......")
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
elif args.SGD is True:
print("SGD Training.......")
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay,
momentum=args.momentum_value)
elif args.Adadelta is True:
print("Adadelta Training.......")
optimizer = torch.optim.Adadelta(model.parameters(), lr=args.lr, weight_decay=args.init_weight_decay)
steps = 0
epoch_step = 0
model_count = 0
best_accuracy = Best_Result()
model.train()
for epoch in range(1, args.epochs+1):
steps = 0
print("\n## The {} Epoch, All {} Epochs ! ##".format(epoch, args.epochs))
for batch in train_iter:
feature, target = batch.text, batch.label
feature.data.t_(), target.data.sub_(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
optimizer.zero_grad()
# model.zero_grad()
logit = model(feature)
loss = F.cross_entropy(logit, target)
loss.backward()
if args.init_clip_max_norm is not None:
utils.clip_grad_norm_(model.parameters(), max_norm=args.init_clip_max_norm)
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
train_size = len(train_iter.dataset)
corrects = (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
accuracy = float(corrects)/batch.batch_size * 100.0
sys.stdout.write(
'\rBatch[{}/{}] - loss: {:.6f} acc: {:.4f}%({}/{})'.format(steps,
train_size,
loss.item(),
accuracy,
corrects,
batch.batch_size))
if steps % args.test_interval == 0:
print("\nDev Accuracy: ", end="")
eval(dev_iter, model, args, best_accuracy, epoch, test=False)
print("Test Accuracy: ", end="")
eval(test_iter, model, args, best_accuracy, epoch, test=True)
if steps % args.save_interval == 0:
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
save_prefix = os.path.join(args.save_dir, 'snapshot')
save_path = '{}_steps{}.pt'.format(save_prefix, steps)
torch.save(model.state_dict(), save_path)
if os.path.isfile(save_path) and args.rm_model is True:
os.remove(save_path)
model_count += 1
return model_count
def eval(data_iter, model, args, best_accuracy, epoch, test=False):
model.eval()
corrects, avg_loss = 0, 0
for batch in data_iter:
feature, target = batch.text, batch.label
feature.data.t_(), target.data.sub_(1) # batch first, index align
if args.cuda:
feature, target = feature.cuda(), target.cuda()
logit = model(feature)
loss = F.cross_entropy(logit, target)
avg_loss += loss.item()
corrects += (torch.max(logit, 1)[1].view(target.size()).data == target.data).sum()
size = len(data_iter.dataset)
avg_loss = loss.item()/size
accuracy = 100.0 * float(corrects)/size
model.train()
print(' Evaluation - loss: {:.6f} acc: {:.4f}%({}/{})'.format(avg_loss, accuracy, corrects, size))
if test is False:
if accuracy >= best_accuracy.best_dev_accuracy:
best_accuracy.best_dev_accuracy = accuracy
best_accuracy.best_epoch = epoch
best_accuracy.best_test = True
if test is True and best_accuracy.best_test is True:
best_accuracy.accuracy = accuracy
if test is True:
print("The Current Best Dev Accuracy: {:.4f}, and Test Accuracy is :{:.4f}, locate on {} epoch.\n".format(
best_accuracy.best_dev_accuracy, best_accuracy.accuracy, best_accuracy.best_epoch))
if test is True:
best_accuracy.best_test = False
class Best_Result:
def __init__(self):
self.best_dev_accuracy = -1
self.best_accuracy = -1
self.best_epoch = 1
self.best_test = False
self.accuracy = -1