-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfsm.py
executable file
·283 lines (260 loc) · 10.1 KB
/
fsm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#
# Thomas Quintana <[email protected]>
'''
In this module we implement a declarative finite state machine using method decorators.
'''
import types
class FiniteStateMachineError(Exception):
'''
A finite state machine exception.
'''
def __init__(self, message):
self.message = message
def __str__(self):
return self.message
class Action(object):
'''
The Action decorator adds metadata to methods so they can be used by the finite
state machine as actions that are executed upon entering or exiting a state.
Arguments: state - The state upon which the action will be executed.
on_enter - If True the action is executed when entering the state.
on_exit - If True the action is executed when exiting the state.
'''
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
def __call__(self, function):
# Append metadata to the function that is necessary
# to build a transition lookup table by the finite
# state machine.
state = self.kwargs.get('state')
if not state \
or not type(state) == types.StringType \
or len(state) == 0:
raise FiniteStateMachineError('Please specify a valid action \
state attribute.\n Possible values are strings.')
else:
function.__fsm_action_state__ = state
# if self.kwargs.has_key('on_enter'):
if 'on_enter' in self.kwargs:
on_enter = self.kwargs.get('on_enter')
if type(on_enter) == types.BooleanType:
function.__fsm_action_on_enter__ = on_enter
else:
raise TypeError('Please specify a valid action on_enter \
attribute.\n Possible values are True or False.')
else:
function.__fsm_action_on_enter__ = True
# if self.kwargs.has_key('on_exit'):
if 'on_exit' in self.kwargs:
on_exit = self.kwargs.get('on_exit')
if type(on_exit) == types.BooleanType:
function.__fsm_action_on_exit__ = on_exit
else:
raise TypeError('Please specify a valid action on_exit \
attribute.\n Possible values are True or False.')
else:
function.__fsm_action_on_exit__ = False
function.__fsm_action__ = True
return function
class Guard(object):
'''
The Guard decorator adds metadata to predicate methods so they can be used by
the finite state machine as guards protecting transitions into states.
Arguments: state - The state upon which the guard will be executed.
'''
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
def __call__(self, function):
# Append metadata to the function that is necessary
# to build a transition lookup table by the finite
# state machine.
state = self.kwargs.get('state')
if not state \
or not type(state) == types.StringType \
or len(state) == 0:
raise TypeError('Please specify a valid guard state attribute.\n\
Possible values are strings.')
else:
function.__fsm_guard_state__ = state
function.__fsm_guard__ = True
return function
class FiniteStateMachine(object):
'''
A finite state machine.
'''
def __init__(self, *args, **kwargs):
super(FiniteStateMachine, self).__init__(*args, **kwargs)
self.__fsm_transition_table__ = self.__create_lookup_table__()
self.__state__ = self.initial_state
def __create_lookup_table__(self):
'''
Creates a transition lookup table based on the possible transitions.
'''
actions = self.__get_actions__()
guards = self.__get_guards__()
states = self.__get_states__()
state_map = self.__create_state_map__(actions, guards, states)
# Create the lookup table.
lookup_table = dict()
for begin, end in self.transitions:
transitions = lookup_table.get(begin)
if not transitions:
transitions = dict()
lookup_table.update({ begin: transitions })
transition = transitions.get(end)
if not transition:
transition = dict()
transitions.update({ end: transition })
# if not transition.has_key('beginning_state'):
if 'beginning_state' not in transition:
transition.update({ 'beginning_state': state_map.get(begin) })
# if not transition.has_key('end_state'):
if 'end_state' not in transition:
transition.update({ 'end_state': state_map.get(end) })
return lookup_table
def __create_state_map__(self, actions, guards, states):
'''
Creates a map from states to actions and guards.
Arguments: actions - The actions declared for this finite state machine.
guards - The guards declared for this finite state machine.
state - The possible states for this finite state machine.
'''
state_map = dict()
# Make sure every state has an entry.
for state in states:
state_map.update({ state: dict() })
# Attach actions to their states.
for action in actions:
state_name = action.__fsm_action_state__
if state_name not in states:
raise FiniteStateMachineError('A state named %s is not declared \
in the transitions list.\n Please add %s to the list of possible \
transitions or modify the @Action decorator on %s.' % (state_name,
state_name, action.__name__))
state = state_map.get(state_name)
on_enter = action.__fsm_action_on_enter__
if not state.has_key('on_enter'):
if on_enter:
state.update({ 'on_enter': action })
else:
raise FiniteStateMachineError('The %s state can only have one \
action declared for on_enter.' % (state_name))
on_exit = action.__fsm_action_on_exit__
if not state.has_key('on_exit'):
if on_exit:
state.update({ 'on_exit': action })
else:
raise FiniteStateMachineError('The %s state can only have one \
action declared for on_exit.' % (state_name))
# Attach guards to their states.
for guard in guards:
state_name = guard.__fsm_guard_state__
if state_name not in states:
raise FiniteStateMachineError('A state named %s is not declared \
in the transitions list.\n Please add %s to the list of possible \
transitions or modify the @Guard decorator on %s.' % (state_name,
state_name, guard.__name__))
state = state_map.get(state_name)
if not state.has_key('guard'):
state.update({ 'guard': guard })
else:
raise FiniteStateMachineError('The %s state can only have one guard \
declared' % (state_name))
return state_map
def __get_actions__(self):
'''
Returns: All the actions declared for this finite state machine.
'''
return filter(
lambda callable: hasattr(callable, '__fsm_action__'),
self.__get_callables__()
)
def __get_callables__(self):
'''
Returns: All the methods for this object.
'''
actions = list()
results = dir(self)
for result in results:
attr = getattr(self, result)
if hasattr(attr, '__call__'):
actions.append(attr)
return actions
def __get_guards__(self):
'''
Returns: All the guards declared for this finite state machine.
'''
return filter(
lambda callable: hasattr(callable, '__fsm_guard__'),
self.__get_callables__()
)
def __get_states__(self):
'''
Returns: The possible states based on the declared transitions.
'''
# Make sure the user declared a set of possible transitions.
if not self.transitions:
raise FiniteStateMachineError('Please specify a list of possible \
transitions.\n Each entry in the list is a two-tuple where the \
first value is the beginning state and the second value is the \
end state.')
states = list()
for begin, end in self.transitions:
if begin not in states:
states.append(begin)
if end not in states:
states.append(end)
return states
def state(self):
return self.__state__
def transition(self, to = None, event = None):
'''
Transitions the finite state machine to a new state.
Arguments: to - The desired end state.
event - The event that caused the state change.
'''
# Make sure we are in a good state.
transitions = self.__fsm_transition_table__.get(self.__state__)
if not transitions:
raise FiniteStateMachineError('The %s state is invalid, or we \
have entered a terminal state.' % (self.__state__))
# Try to find the desired transition.
transition = transitions.get(to)
if not transition:
raise FiniteStateMachineError('The transition from %s to %s is \
invalid.' % (self.__state__, to))
# If there are any guards lets execute those now.
if transition.get('end_state').has_key('guard'):
allowed = transition.get('end_state').get('guard')()
if not type(allowed) == types.BooleanType:
raise FiniteStateMachineError('A guard must only return True \
or False values.')
if not allowed:
raise FiniteStateMachineError('A guard declined the transition \
from %s to %s.' % (self.__state__, to))
# Try to execute the action associated with leaving the current state.
if transition.get('beginning_state').has_key('on_exit'):
transition.get('beginning_state').get('on_exit')(event)
# Try to execute the action associated with entering the new state.
if transition.get('end_state').has_key('on_enter'):
transition.get('end_state').get('on_enter')(event)
# Enter the new state and we're done.
self.__state__ = to