From 35c55633469dffc6c76c3d197a9cc37abdee04f0 Mon Sep 17 00:00:00 2001 From: Daan de Jong Date: Tue, 19 Dec 2023 11:31:19 +0100 Subject: [PATCH] link to paper --- README.Rmd | 6 ++---- README.md | 35 ++++++++++++++++++----------------- 2 files changed, 20 insertions(+), 21 deletions(-) diff --git a/README.Rmd b/README.Rmd index 26e7d0c..12721ee 100644 --- a/README.Rmd +++ b/README.Rmd @@ -78,8 +78,6 @@ BibTeX: ## Get more info -For more information, see the [`hystar` website](https://daandejongen.github.io/hystar/). +For more information about the package, see the [`hystar` website](https://daandejongen.github.io/hystar/). -If you want to read more, see the paper with the original proposal of the HysTAR model in Biometrika ([Li, Guan, Li and Yu (2015)](https://academic.oup.com/biomet/article-abstract/102/3/717/2365298?login=false)). - -If you need something more accessible, I am working on a paper about using the HysTAR model in psychological research. There, I also explain in more detail what hysteresis is. +If you want to read more about the HysTAR model itself, see the paper with the original proposal of the HysTAR model in Biometrika ([Li, Guan, Li and Yu (2015)](https://academic.oup.com/biomet/article-abstract/102/3/717/2365298?login=false)). Or, for a mathematically more accessible introduction, see [the paper](https://osf.io/preprints/psyarxiv/zrcft) (pre-print) I wrote about detecting hysteresis with the HysTAR model in psychological time series. diff --git a/README.md b/README.md index ed7c511..4194244 100644 --- a/README.md +++ b/README.md @@ -53,34 +53,34 @@ simulated_hystar_model <- hystar_sim(z = control_variable) fitted_hystar_model <- hystar_fit(data = simulated_hystar_model$data) summary(fitted_hystar_model) #> HysTAR model fitted on 99 observations, of which -#> 49 observations in regime 0 and -#> 50 observations in regime 1. +#> 51 observations in regime 0 and +#> 48 observations in regime 1. #> #> Estimated thresholds: #> r0 r1 -#> -0.509 0.509 +#> -0.454 0.562 #> #> Estimated delay: #> 0 #> #> Estimated model coefficients: #> est SE p -#> phi_00 0.258 0.178 0.148 -#> phi_01 0.529 0.102 0.000 -#> phi_10 2.546 0.448 0.000 -#> phi_11 0.380 0.109 0.000 +#> phi_00 0.314 0.156 0.045 +#> phi_01 0.346 0.106 0.001 +#> phi_10 1.882 0.435 0.000 +#> phi_11 0.538 0.108 0.000 #> #> Estimated residual variances: #> sigma2_0 sigma2_1 -#> 1.319 1.031 +#> 1.009 1.097 #> #> Residuals: #> min 1q median 3q max -#> -2.163 -0.797 -0.118 0.739 2.890 +#> -2.639 -0.676 0.014 0.823 2.532 #> #> Information criteria: #> bic aic aicc aiccp -#> 38.52329 27.11176 28.16683 39.11176 +#> 28.28185 16.87277 17.92886 28.87277 ``` ## Install @@ -115,13 +115,14 @@ BibTeX: ## Get more info -For more information, see the [`hystar` +For more information about the package, see the [`hystar` website](https://daandejongen.github.io/hystar/). -If you want to read more, see the paper with the original proposal of -the HysTAR model in Biometrika ([Li, Guan, Li and Yu +If you want to read more about the HysTAR model itself, see the paper +with the original proposal of the HysTAR model in Biometrika ([Li, Guan, +Li and Yu (2015)](https://academic.oup.com/biomet/article-abstract/102/3/717/2365298?login=false)). - -If you need something more accessible, I am working on a paper about -using the HysTAR model in psychological research. There, I also explain -in more detail what hysteresis is. +Or, for a mathematically more accessible introduction, see [the +paper](https://osf.io/preprints/psyarxiv/zrcft) (pre-print) I wrote +about detecting hysteresis with the HysTAR model in psychological time +series.