-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathexr-needle-sharing.qmd
183 lines (152 loc) · 3.55 KB
/
exr-needle-sharing.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
```{r}
#| tbl-cap: "Needle-sharing data"
#| label: tbl-needle-data
library(tidyverse)
library(haven)
needles =
"inst/extdata/needle_sharing.dta" |>
read_dta() |>
as_tibble() |>
mutate(
hivstat =
hivstat |>
case_match(
1 ~ "HIV+",
0 ~ "HIV-") |>
factor() |>
relevel(ref = "HIV-"),
polydrug =
polydrug |>
case_match(
1 ~ "multiple drugs used",
0 ~ "one drug used") |>
factor() |>
relevel(ref = "one drug used"),
homeless =
homeless |>
case_match(
1 ~ "homeless",
0 ~ "not homeless") |>
factor() |>
relevel(ref = "not homeless"),
sex = sex |> factor() |> relevel(ref = "M"))
needles
```
---
```{r}
#| fig-cap: "Rates of needle sharing"
#| label: fig-needles
library(ggplot2)
needles |>
ggplot(
aes(
x = age,
y = shared_syr,
shape = sex,
col = ethn
)
) +
geom_point(
size = 3,
alpha = .5) +
facet_grid(
cols = vars(sex, polydrug),
rows = vars(homeless)) +
theme(legend.position = "bottom")
```
#### Covariate counts
```{r}
#| tbl-cap: "Counts of observations in `needles` dataset by sex, unhoused status, and multiple drug use"
#| label: tbl-count-needles
#| code-fold: show
needles |>
dplyr::select(sex, homeless, polydrug) |>
summary()
```
---
There's only one individual with `sex = Trans`,
which unfortunately isn't enough data to analyze.
We will remove that individual:
```{r}
#| label: remove-trans-obs
#| code-summary: 'remove singleton observation with sex == Trans'
needles = needles |> filter(sex != "Trans")
```
---
### models {.smaller}
```{r}
#| include: false
#| label: needles-pois-model-vittinghoff
glm0 = glm(
data = needles,
family = stats::poisson,
formula = shared_syr ~ homeless
)
```
```{r}
#| tbl-cap: "Poisson model for needle-sharing data"
#| label: tbl-needles-pois
glm1 = glm(
data = needles,
family = stats::poisson,
shared_syr ~ age + sex + homeless*polydrug
)
library(parameters)
glm1 |> parameters(exponentiate = TRUE) |>
print_md()
```
```{r}
#| tbl-cap: "Diagnostics for Poisson model"
#| label: tbl-pois-model-diagnostics
library(ggfortify)
autoplot(glm1)
```
--
```{r}
#| tbl-cap: "Negative binomial model for needle-sharing data"
#| label: tbl-needles-nb
library(MASS) #need this for glm.nb()
glm1.nb = glm.nb(
data = needles,
shared_syr ~ age + sex + homeless*polydrug
)
summary(glm1.nb)
```
```{r}
#| tbl-cap: "Poisson versus Negative Binomial Regression coefficient estimates"
#| label: tbl-compare-poisson-nb
tibble(name = names(coef(glm1)), poisson = coef(glm1), nb = coef(glm1.nb))
```
#### zero-inflation
```{r}
#| tbl-cap: "Zero-inflated poisson model"
#| label: tbl-zeroinf-poisson
library(glmmTMB)
zinf_fit1 = glmmTMB(
family = "poisson",
data = needles,
formula = shared_syr ~ age + sex + homeless*polydrug,
ziformula = ~ age + sex + homeless + polydrug # fit won't converge with interaction
)
zinf_fit1 |>
parameters(exponentiate = TRUE) |>
print_md()
```
::: notes
Another R package for zero-inflated models is [`pscl`](https://cran.r-project.org/web/packages/pscl/index.html) (@pscl08).
:::
#### zero-inflated negative binomial model
```{r}
#| tbl-cap: "Zero-inflated negative binomial model"
#| label: tbl-zeroinf-nb
library(glmmTMB)
zinf_fit1 = glmmTMB(
family = nbinom2,
data = needles,
formula = shared_syr ~ age + sex + homeless*polydrug,
ziformula = ~ age + sex + homeless + polydrug # fit won't converge with interaction
)
zinf_fit1 |>
parameters(exponentiate = TRUE) |>
print_md()
```