forked from ElectricPowerResearcher/Optimization_Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPSO.m
121 lines (109 loc) · 2.9 KB
/
PSO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
% 粒子群核心思想:https://www.cnblogs.com/21207-iHome/p/6062535.html
% 大致思路:信息的社会共享,以一个团队的形式来搜索!
% 团队里成员信息共享,共同进步;避免一个人工作时出现目光短浅,没有全局意识。
clc;
clear;
syms x y;
% 根据函数表达式: f最小值是0
f = 20 + x^2 + y^2 -10*(cos(2*pi*x) + cos(2*pi*y));
% 网格与速度范围限定:
xmax = 5;
xmin = -5;
vmax = 1;
vmin = -1;
% 权重参数初始化:
w = rand()
c1 = 2;
c2 = 2; % 1.49445
% 信息交换次数:
maxgen = 6000;
% 粒子总数:
siezpop = 3;
% 1点:
vx1 = 2*(rand()-0.5);
vy1 = 2*(rand()-0.5); % 初始速度
x1 = 10*(rand()-0.5);
y1 = 10*(rand()-0.5); % 初始位置
f1 = 20 + x1^2 + y1^2 -10*(cos(2*pi*x1) + cos(2*pi*y1)); % 1点初始适应度
% 2点:
vx2 = 2*(rand()-0.5);
vy2 = 2*(rand()-0.5); % 初始速度
x2 = 10*(rand()-0.5);
y2 = 10*(rand()-0.5); % 初始位置
f2 = 20 + x2^2 + y2^2 -10*(cos(2*pi*x2) + cos(2*pi*y2)); % 2点初始适应度
% 3点:
vx3 = 2*(rand()-0.5);
vy3 = 2*(rand()-0.5); % 初始速度
x3 = 10*(rand()-0.5);
y3 = 10*(rand()-0.5); % 初始位置
f3 = 20 + x3^2 + y3^2 -10*(cos(2*pi*x3) + cos(2*pi*y3)); % 3点初始适应度
gf = [f1,f2,f3];
gx = [x1,x2,x3];
gy = [y1,y2,y3];
% 1点初始最佳位置:
gbestx1 = x1;
gbesty1 = y1;
% 2点初始最佳位置:
gbestx2 = x2;
gbesty2 = y2;
% 3点初始最佳位置:
gbestx3 = x3;
gbesty3 = y3;
% 总体的最佳位置
[m,xy] = min(gf);
zbestx = gx(xy);
zbesty = gy(xy);
num = 1;
while num < maxgen
% 1点速度更新:
vx1 = w*vx1 + c1*rand()*(gbestx1-x1) + c2*rand()*(zbestx-x1);
vy1 = w*vy1 + c1*rand()*(gbesty1-y1) + c2*rand()*(zbesty-y1);
% 2点速度更新:
vx2 = w*vx2 + c1*rand()*(gbestx2-x2) + c2*rand()*(zbestx-x2);
vy2 = w*vy2 + c1*rand()*(gbesty2-y2) + c2*rand()*(zbesty-y2);
% 3点速度更新:
vx3 = w*vx3 + c1*rand()*(gbestx3-x3) + c2*rand()*(zbestx-x3);
vy3 = w*vy3 + c1*rand()*(gbesty3-y3) + c2*rand()*(zbesty-y3);
% 1点位置更新:
x1_tmp = x1 + 0.5*vx1;
y1_tmp = y1 + 0.5*vy1;
% 2点位置更新:
x2_tmp = x2 + 0.5*vx2;
y2_tmp = y2 + 0.5*vy2;
% 3点位置更新:
x3_tmp = x3 + 0.5*vx3;
y3_tmp = y3 + 0.5*vy3;
gx_tmp = [x1_tmp,x2_tmp,x3_tmp];
gy_tmp = [y1_tmp,y2_tmp,y3_tmp];
% 3个点适应度更新:
f1_tmp = 20 + x1^2 + y1^2 -10*(cos(2*pi*x1) + cos(2*pi*y1));
f2_tmp = 20 + x2^2 + y2^2 -10*(cos(2*pi*x2) + cos(2*pi*y2));
f3_tmp = 20 + x3^2 + y3^2 -10*(cos(2*pi*x3) + cos(2*pi*y3));
gf_tmp = [f1_tmp,f2_tmp,f3_tmp];
% 1点最优位置更新:
if f1_tmp < f1
x1 = x1_tmp;
y1 = y1_tmp;
end
% 2点最优位置更新:
if f2_tmp < f2
x2 = x2_tmp;
y2 = y2_tmp;
end
% 3点最优位置更新:
if f3_tmp < f3
x3 = x3_tmp;
y3 = y3_tmp;
end
% 群体最优位置更新:
if min(gf_tmp) < m
gf = gf_tmp;
[m,xy] = min(gf);
zbestx = gx(xy);
zbesty = gy(xy);
end
num = num + 1
end
zbestx
zbesty
min(gf)