forked from ElectricPowerResearcher/Optimization_Algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConjugate_Gradient.m
64 lines (55 loc) · 1.49 KB
/
Conjugate_Gradient.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
clc;
clear;
syms x y r;
f = (x+y)^2 + (x+1)^2 + (y+3)^2;
syms x_tmp y_tmp;
f_tmp = (x_tmp+y_tmp)^2 + (x_tmp+1)^2 + (y_tmp+3)^2;
% 一阶导数:
fx = diff(f,x);
fy = diff(f,y);
grad_f1 = [fx,fy]'; % 梯度(列向量)
% 做图:原始3d曲面图
x = -20:0.1:20;
y = -15:0.1:15;
[X,Y] = meshgrid(x,y);
Z = (X+Y).^2 + (X+1).^2 + (Y+3).^2;
figure(1);
mesh(X,Y,Z);
xlabel('横坐标x'); ylabel('纵坐标y'); zlabel('空间坐标z');
hold on;
% 做图:原始点
x0 = 10; y0 = -1.5;
z0 = (x0+y0)^2 + (x0+1)^2 + (y0+3)^2;
plot3(x0,y0,z0,'r*')
hold on
% 初始化:
acc = 0.0001; % 精度
x = 10;
y = -1.5; % 起点
k = 1; % 下降次数:这里特殊!共轭是用"新点"来做判断的!
fprintf('共轭梯度下降开始:\n');
d = -eval(grad_f1); % 起始d值
while 1
% grad_f1_down与grad_f1_up是算μ的分母与分子
% 并且分子是梯度新一轮的值,分母是梯度上一轮的值!
% r和r_result就是每一轮的变步长λ
grad_f1_down = norm(eval(grad_f1))^2; % 用老(x,y)的值
x_tmp = x + r*d(1);
y_tmp = y + r*d(2);
r_result = solve(diff(eval(f_tmp)));
% 进入新一轮:
x = x + r_result*d(1);
y = y + r_result*d(2);
grad_f1_up = norm(eval(grad_f1))^2; % 用新(x,y)的值
plot3(x,y,eval(f),'r*'); % 并且标点也是用新的!
hold on
if norm(eval(grad_f1)) <= acc
fprintf('极值坐标为:(%.5f,%.5f,%.5f)\n',x,y,eval(f))
fprintf('迭代次数:%d\n',k)
break;
end
miu = grad_f1_up/grad_f1_down;
d = -eval(grad_f1) + miu*d;
k = k+1;
end
hold off;