-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsimulate_apy.py
175 lines (144 loc) · 5.42 KB
/
simulate_apy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gzip
import json
import numpy as np
from scipy.interpolate import interp1d
from plot_curve import f_profit_deriv, f_liq_density
# For calculating AMM fee
OUT_FEE = 0.003
IN_FEE = 0.0021 # Not the real fee because there are more trades at lower fee, and we don't take that into account
FEE_GAMMA = 5e-4
FEE = 0.003 * 2/3
# not feasible gas-wise if lower
# makes sense to do like gas / fee * 2 or thereabouts
USD_TRADE_LIMIT = 0 # USD
TRUNC_BLOCK = 12580000
def get_fee(delta):
f = FEE_GAMMA / (FEE_GAMMA + delta**2 / 3)
return IN_FEE * f + OUT_FEE * (1 - f)
def load():
with gzip.open('trades-recent.json.gz', 'r') as f:
data = json.load(f)
pre_profits = []
pre_prices = []
price_0 = {} # eth-usdt, eth-wbtc, wbtc-usdc
btc2usd = None
for pair in ['eth-usdt', 'wbtc-usdc', 'eth-wbtc']:
d = data['pricevol'][pair]
_t = []
_price = []
for obj in d:
if obj['block'] < TRUNC_BLOCK:
continue
if pair not in price_0:
price_0[pair] = obj['p']
low_vol = False
# This handling of truncating small trades is a bit dirty but works
if pair == 'eth-usdt':
if obj['volume'] < USD_TRADE_LIMIT:
low_vol = True
elif pair == 'eth-wbtc':
v = btc2usd(obj['t']) * obj['volume']
if v < USD_TRADE_LIMIT:
low_vol = True
elif pair == 'wbtc-usdc':
if obj['volume'] < USD_TRADE_LIMIT:
low_vol = True
if low_vol:
pre_profits += [(obj['t'], 0.0)]
else:
pre_profits += [
(obj['t'], FEE * obj['volume'] / (data['balances'][pair][str(obj['block'])]['balance1'] * 2))
]
pre_prices += [
(obj['t'], pair, obj['p'])
]
_t.append(obj['t'])
_price.append(obj['p'])
if pair == 'wbtc-usdc':
btc2usd = interp1d(_t, _price, fill_value='extrapolate')
pre_profits = sorted(pre_profits)
pre_prices = sorted(pre_prices)
prices = []
p_vec = [price_0['wbtc-usdc'], price_0['eth-usdt']]
for t, pair, pp in pre_prices:
p_vec = p_vec[:]
if pair == 'wbtc-usdc':
p_vec[0] = pp
elif pair == 'eth-usdt':
p_vec[1] = pp
else: # eth-wbtc
p_vec[1] = p_vec[0] * pp
prices.append(p_vec)
xcp = 1.0
times = []
profits = []
for t, p in pre_profits:
xcp += p
times.append(t)
profits.append(xcp)
return np.array(times), np.array(profits), np.array(prices)
def ema(times, prices, T=600):
p0 = prices[0]
muls = np.exp(-(times[1:] - times[:-1]) / T)
result = [p0]
for mul, p in zip(muls, prices):
result.append(result[-1] * mul + p * (1 - mul))
return np.array(result)
class Simulator:
def __init__(self, step=0.002):
self.times, self.profits, self.prices = load()
self.emas = ema(self.times, self.prices)
self.step = step
self.allowed_extra_profit = 2e-6
def simulate(self, A, gamma):
f_profit = f_profit_deriv(A, gamma)
f_ld = f_liq_density(A, gamma)
p0 = self.prices[0]
p = [p0]
_profit = self.profits[0]
lds = []
# for t, profit, ema in zip(self.times[1:], self.profits, self.emas):
for i in range(1, len(self.times)):
pvec = np.log(self.emas[i] / p[-1])
delta = (pvec ** 2).sum() ** .5
_profit += (self.profits[i] - self.profits[i - 1]) * (get_fee(delta) / (1.5 * FEE)) # The last multiplier is approx / can be 1?
lds.append(f_ld(delta))
if delta < self.step or self.profits[i] == self.profits[i - 1]:
p.append(p[-1])
else:
d_profit = abs(f_profit(delta) * self.step * _profit)
if _profit - d_profit - 1 > (self.profits[i] - 1) / 2 + self.allowed_extra_profit:
_profit -= d_profit
new_p = np.exp(self.step / delta * pvec) * p[-1]
p.append(new_p)
else:
p.append(p[-1])
dt = (self.times[1:] - self.times[:-1])
# Normal mean
lds = np.array(lds) * dt
mean = np.sum(lds) / (self.times[-1] - self.times[0])
# Inverse mean
# lds = (1 / np.array(lds)) * dt
# mean = 1 / (np.sum(lds) / (self.times[-1] - self.times[0]))
# Time-median LD
# lds = np.array(lds)
# ix = lds.argsort()
# mean = lds[ix][np.cumsum(dt[ix]).searchsorted((self.times[-1] - self.times[0]) / 2)]
return np.array(p), mean, lds
if __name__ == '__main__':
import pylab
s = Simulator()
# for mul in 2 ** np.arange(10):
# for gamma_mul in np.logspace(np.log10(0.1), np.log10(10), 5):
# A = int(A0 * mul * 3**3 * 10000)
# gamma = int(gamma0 * 0.5 ** (10/mul) * gamma_mul * 1e18)
# _, ld, _ = s.simulate(A=A, gamma=gamma)
# print(A / (3**3 * 10000), gamma / 1e18, ld)
# print()
t = s.times
p, ld, lds = s.simulate(A=int(2 * 3**3 * 10000), gamma=int(2.1e-5 * 1e18))
print(ld)
pylab.plot((t - t[0]) / 3600, s.emas[:, 1], color='gray')
pylab.plot((t - t[0]) / 3600, p[:, 1], color='blue')
# pylab.plot((t - t[0])[1:] / 3600, lds)
pylab.show()