-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleanup.m
187 lines (170 loc) · 6.61 KB
/
cleanup.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
function [d] = cleanup(d)
% interpolate missing markers when gaps are small
% gaps that are too large are replaced by NaN (not a number)
%
% Input:
% d: data structure from importdata(mocapfile)
% Output:
% d: data with gaps interpolated
% replace zeros in mocapdata (missing markers) by NaN
d.data( d.data == 0 ) = NaN;
% first do gap filling on pelvis markers, using rigid body kinematics
% col = contains(d.colheaders, {'RASIS','LASIS','RPSIS','LPSIS','SACR'} );
% d.data(:,col) = rigidbodyfill(d.data(:,col));
% we only interpolate when less than maxgap successive frames are
% missing
maxgap = 10;
times = d.data(:,1); % time values are in column 1
[nframes,ncolumns] = size(d.data);
for i = 1:ncolumns
% see if it a marker channel
colname = d.colheaders{i};
if findstr(colname, '.PosX')
markercolumns = i:i+2; % PosX, PosY, PosZ
% find the frames with good data (value not zero)
goodframes = find(~isnan(d.data(:,i)));
% if we don't have 2 frames, make this marker NaN for the whole trial
if numel(goodframes) < 2
d.data(:,markercolumns) = NaN(nframes,3);
% many TXT files contain a "S1" marker which is not real
% and does not have data, no need to report it
if ~contains(colname,'S1.Pos')
fprintf('%12s: COMPLETELY missing\n', colname(1:end-1));
end
else
% find large gaps, they should not be interpolated but replaced by NaN
interpframes = setdiff(1:nframes, goodframes); % normally, we interpolate all frames that are missing
largegaps = find(diff(goodframes)>maxgap);
for j = 1:numel(largegaps)
gapframes = goodframes(largegaps(j))+1:goodframes(largegaps(j)+1)-1; % the frame numbers inside the gap
d.data(gapframes,markercolumns) = NaN;
interpframes = setdiff(interpframes, gapframes); % remove these frames from the interpolation
end
% print some information
fractionmissing = (nframes-numel(goodframes))/nframes;
if (fractionmissing > 0)
fractioninterpolated = numel(interpframes)/nframes;
fprintf('%12s: %5.2f%% missing -- %5.2f%% interpolated\n', colname(1:end-1), 100*fractionmissing, 100*fractioninterpolated);
end
% interpolate across the gaps that are not too large
d.data(interpframes,markercolumns) = interp1(times(goodframes), d.data(goodframes,i:i+2), times(interpframes), 'linear');
end
end
end
end
%==================================================================
function d = rigidbodyfill(d)
% d is a N x 3M matrix with N frames of XYZ data for M markers
% try to fill the gaps using the assumption that all M markers are on the
% same rigid body
N = size(d,1);
M = size(d,2)/3;
d1 = d;
% find the frames where all markers are visible
f = find(~isnan(sum(d,2)));
% use the mean of these frames to define (arbitrary) local coordinates of all markers
xyzloc = d(f(1),:);
xyzloc = reshape(xyzloc,3,M)';
% calculate local coordinates for the markers from all complete frames
newxyzloc = [];
for i = 1:numel(f)
frame = f(i);
xyz = reshape(d(frame,:),3,M)';
[R,t,rms] = soder(xyz, xyzloc);
if rms < 0.003
newxyzloc = [newxyzloc ; reshape(R*xyz' + t,1,3*M)];
end
end
xyzloc = reshape(mean(newxyzloc),3,M)'; % now we have more accurate local coordinates
% go through all frames where something was missing
f = find(isnan(sum(d,2)));
for frame = 1:numel(f)
i = f(frame);
xyz = reshape(d(i,:), 3, M)';
vis = find(~isnan(xyz(:,1))); % which markers are visible
SEMmin = 1e10;
S = subsets(vis, 3); % find subsets of vis with at least 3 markers
% find the subset that gives the best fit
for k = 1:numel(S)
set = S{k};
[R,t,rms] = soder(xyzloc(set,:), xyz(set,:));
SEM = 3*rms / sqrt(3*numel(set)-6); % unbiased SEM
if SEM < SEMmin
SEMmin = SEM;
setmin = set;
Rmin = R;
tmin = t;
end
end
% reconstruct the markers that are not in the subset
if i == 4860
keyboard
end
m = setdiff(1:M, setmin);
for j = 1:numel(m)
k = m(j);
col = 3*(k-1) + (1:3); % columns where XYZ of this marker are
d(i,col) = ( Rmin*xyzloc(k,:)' + tmin )';
end
end
end
%======================================================================
function[R,d,rms] = soder(P1,P2)
% Estimates rigid body pose R,d from marker coordinates
%
% Input:
% P1 (N x 3 matrix) coordinates of N markers in coordinate system 1
% P2 (N x 3 matrix) coordinates of the same markers, now measured in coordinate system 2
%
% Output:
% R (3x3 matrix)
% d (3x1 matrix) such that P2 = R*P1 + d)
% rms (scalar, optional) rms fit error of the rigid body model: P2 = T*P1 + error
%
% Method:
% Soderkvist I. and Wedin P.A. (1993) Determining the movements of the skeleton using
% well-configured markers. Journal of Biomechanics, 26:1473-1477.
% error checking
[nmarkers,ndim1]=size(P1);
[nmarkers2,ndim2]=size(P2);
if (ndim1 ~= 3) || (ndim2 ~= 3)
error('hmc3_soder: matrix with marker coordinates must have 3 columns (x,y,z)');
end
if (nmarkers2 ~= nmarkers)
error('hmc3+soder: matrices with marker coordinates must have same number of rows');
end
% construct matrices A and B, subtract the mean so there is only rotation
m1=mean(P1);
m2=mean(P2);
for i=1:nmarkers
A(i,:)=P1(i,:)-m1;
B(i,:)=P2(i,:)-m2;
end
A = A';
B = B';
% The singular value decomposition to calculate rotation matrix R
C=B*A';
[P,T,Q]=svd(C);
R=P*diag([1 1 det(P*Q')])*Q';
% Calculate the translation vector from the centroid of all markers
d=m2'-R*m1';
% calculate RMS value of residuals
sumsq = 0;
for i=1:nmarkers
P2model = R*P1(i,:)' + d;
sumsq = sumsq + norm(P2model-P2(i,:)')^2;
end
rms = sqrt(sumsq/3/nmarkers);
end
%=======================================================================
function S = subsets(a,n)
% find all subsets of a with at least n elements
m = numel(a);
S = { };
for setsize = n:m
s = nchoosek(a,setsize);
for k = 1:size(s,1)
S = [S s(k,:)];
end
end
end