-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathViterbi.py
112 lines (99 loc) · 4.65 KB
/
Viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from probabilistic_distance import probabilistic_distance
from collections import defaultdict
from pprint import pprint
from math import log
import numpy as np
from itertools import chain
def bktree_to_set(results):
return set(map(lambda x: x[1], results))
def get_max_inverse(state, previous_states, model, model_inverse):
try:
#max_prob = next(iter(model_inverse[state].values()))
# return the max inverse probability (first since it is ordered dict)
max_prob = max([model[prev].get(state, 1e-15) for prev in previous_states])
#a = sorted([(prev, model[prev].get(state, 1e-15)) for prev in previous_states], reverse=True, key=lambda x: x[1])
#print(a[0])
# la probabilità più alta che tra le possibili parole precedenti si vada nella parola corrente
except:
max_prob = 1e-15
return max_prob
def filter_possible_states(observation, possible_states, previous_states=None, model_inverse=None, model=None, AMOUNT=20, ADVANCE_FILTERING=True):
if model_inverse is None:
weighted_states = [(state, probabilistic_distance(observation, state)) for state in possible_states]
else:
#[model_inverse[state] for state in possible_states]
weighted_states = []
for state in possible_states:
# estrai solo i previous_state di state
"""max_prob = 1e-15
for predecessor in model_inverse[state].keys():
if predecessor in previous_states:
max_prob = model_inverse[state][predecessor]
break"""
if ADVANCE_FILTERING:
multiplier = get_max_inverse(state, previous_states, model, model_inverse)
else:
multiplier = 1
weighted_states.append(
(
state,
probabilistic_distance(observation, state) * multiplier
)
)
weighted_states = sorted(weighted_states, key=lambda p: p[1], reverse=True)
possible_states = [state for (state, distance) in weighted_states]
return possible_states[:AMOUNT]
class Viterbi():
def __init__(self, model,model_inverse, bktree):
self.model = model
self.model_inverse = model_inverse
self.bktree = bktree
def run(self, observations, SEARCH_DEPTH=2, ADVANCE_FILTERING=True, AMOUNT=20):
if not len(observations): return []
T1 = defaultdict(lambda: defaultdict(float))
T2 = defaultdict(lambda: defaultdict(str))
starting_states = bktree_to_set(self.bktree.find(observations[0], 3))
if not len(starting_states):
starting_states = [observations[0]]
for state in starting_states:
# self.model['START_SENTENCE'].get(state, 1e-15) *
T1[0][state] = self.model['START_SENTENCE'].get(state, 1e-15) * probabilistic_distance(state, observations[0])
T2[0][state] = ''
states = defaultdict(set)
states[0] = filter_possible_states(observations[0], starting_states, ADVANCE_FILTERING=ADVANCE_FILTERING, AMOUNT=AMOUNT)
if not len(states[0]):
states[0] = [observations[0]]
#print(len(states[0]))
#print(states[0])
#print("\n")
for j, observation in enumerate(observations):
if j == 0:
continue
similar_states = []
curr_depth = SEARCH_DEPTH
while not similar_states:
similar_states = bktree_to_set(self.bktree.find(observation, curr_depth))
curr_depth += 1
possible_successor_states_and_probs = set(chain.from_iterable([ list(self.model[state].items()) for state in states[j-1] ]))
possible_successor_states = [pair[0] for pair in sorted(possible_successor_states_and_probs, key=lambda x: x[1], reverse=True)][:100]
states[j] = similar_states | set(possible_successor_states)
states[j] = filter_possible_states(observation, states[j], states[j-1], model_inverse=self.model_inverse, model=self.model, ADVANCE_FILTERING=ADVANCE_FILTERING, AMOUNT=AMOUNT)
if not len(states[j]):
states[j] = [observation]
#print(states[j])
for state in states[j]:
prev_states = states[j-1]
probs = [T1[j-1][prev_state] * self.model[prev_state].get(state, 1e-15) * probabilistic_distance(state, observation) for prev_state in prev_states]
T1[j][state] = max(probs)
probs2 = [T1[j-1][prev_state] * self.model[prev_state].get(state, 1e-15) for prev_state in prev_states]
T2[j][state] = prev_states[np.argmax(probs2)]
# delete last level, not needed
if len(observations) in states: del states[len(observations)]
# reconstruct
T = len(observations) - 1
X = ['' for i in range(len(observations))]
X[T] = states[T][np.argmax([T1[T][state] for state in states[T]])]
for j in range(T, 0, -1):
X[j-1] = T2[j][X[j]]
#pprint(T2)
return X