forked from cvlab-kaist/CoPoNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wrapper.py
executable file
·271 lines (205 loc) · 12.8 KB
/
wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
'''Implements a generic training loop.
'''
import os
import shutil
import time
from collections import defaultdict
from imageio import get_writer, imwrite
import random
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from utils_training import utils
def average_gradients(model):
"""Averages gradients across workers"""
size = float(dist.get_world_size())
for param in model.parameters():
if param.grad is not None:
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
param.grad.data /= size
def training(train_function, dataloader_callback, dataloader_iters, dataloader_params, **kwargs):
model = kwargs.pop('model', None)
optimizer = kwargs.pop('optimizer', None)
org_model_dir = kwargs.pop('model_dir', None)
for params, max_steps in zip(dataloader_params, dataloader_iters):
dataloaders = dataloader_callback(*params)
model_dir = os.path.join(org_model_dir, '_'.join(map(str, params)))
model, optimizers = train_function(dataloaders=dataloaders, model_dir=model_dir, model=model,
optimizer=optimizer,
max_steps=max_steps, **kwargs)
def check_invalid_gradients( model: torch.nn.Module):
encoder_param = []
flag = True
for _, param in model.named_parameters():
encoder_param.append(param)
for param in encoder_param:
if getattr(param, 'grad', None) is not None and torch.isnan(param.grad).any():
print('NaN in gradients.')
flag = False
break
if getattr(param, 'grad', None) is not None and torch.isinf(param.grad).any():
print('Inf in gradients.')
flag = False
break
return flag
def train(model, dataloaders, epochs, lr, epochs_til_checkpoint, model_dir, loss_fn, steps_til_summary=1,
summary_fn=None, iters_til_checkpoint=None, clip_grad=False, val_loss_fn=None, val_summary_fn=None,
overwrite=True, optimizer=None, batches_per_validation=8, gpus=1, rank=0, max_steps=None,
loss_schedules=None, device='gpu', n_view=1, scheduler = None):
if optimizer is None:
assert False
if isinstance(dataloaders, tuple):
train_dataloader, val_dataloader = dataloaders
assert val_loss_fn is not None, "If validation set is passed, have to pass a validation loss_fn!"
else:
train_dataloader, val_dataloader = dataloaders, None
if rank==0:
if os.path.exists(model_dir):
if overwrite:
shutil.rmtree(model_dir)
else:
val = input("The model directory %s exists. Overwrite? (y/n)" % model_dir)
if val == 'y' or overwrite:
shutil.rmtree(model_dir)
os.makedirs(model_dir)
summaries_dir = os.path.join(model_dir, 'summaries')
utils.cond_mkdir(summaries_dir)
checkpoints_dir = os.path.join(model_dir, 'checkpoints')
utils.cond_mkdir(checkpoints_dir)
writer = SummaryWriter(summaries_dir, flush_secs=10)
total_steps = 0
with tqdm(total=len(train_dataloader) * epochs) as pbar:
for epoch in range(epochs):
scheduler.step()
if not epoch % epochs_til_checkpoint and epoch and rank == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict()},
os.path.join(checkpoints_dir, 'model_epoch_%04d_iter_%06d.pth' % (epoch, total_steps)))
for step, (model_input, gt) in enumerate(train_dataloader):
if device == 'gpu':
model_input = utils.dict_to_gpu(model_input)
gt = utils.dict_to_gpu(gt)
model_output = model(model_input, val = False)
losses, _ = loss_fn(model_input,model_output, gt, ITER =step, model=model)
train_loss = 0.
for loss_name, loss in losses.items():
single_loss = loss.mean()
if (loss_schedules is not None) and (loss_name in loss_schedules):
if rank == 0:
writer.add_scalar(loss_name + "_weight", loss_schedules[loss_name](total_steps), total_steps)
single_loss *= loss_schedules[loss_name](total_steps)
if rank == 0:
writer.add_scalar(loss_name, single_loss, total_steps)
train_loss += single_loss
if rank == 0:
if 'at_wt' in model_output:
at_wt = model_output['at_wt']
ent = -(at_wt * torch.log(at_wt + 1e-5)).sum(dim=-1)
ent[torch.isnan(ent)] =0
ent = ent.mean()
writer.add_scalar("total_at_entropy", ent, total_steps)
writer.add_scalar("total_train_loss", train_loss, total_steps)
if not total_steps % steps_til_summary and rank == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict()},
os.path.join(checkpoints_dir, 'model_current.pth'))
train_loss.backward()
do_backprop = check_invalid_gradients(model)
if do_backprop:
if clip_grad:
if isinstance(clip_grad, bool):
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.)
else:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=clip_grad)
if gpus > 1:
average_gradients(model)
optimizer.step()
optimizer.zero_grad()
optimizer.zero_grad()
del train_loss
if rank == 0:
pbar.update(1)
if not total_steps % steps_til_summary and rank == 0:
print(", ".join([f"Epoch {epoch}"] + [f"{name} {loss.mean()}" for name, loss in losses.items()]))
if val_dataloader is not None:
print("Running validation set...")
with torch.no_grad():
model.eval()
val_losses = defaultdict(list)
try:
for val_i, (model_input, gt) in enumerate(val_dataloader):
print("processing valid")
if device == 'gpu':
model_input = utils.dict_to_gpu(model_input)
gt = utils.dict_to_gpu(gt)
rgb_full = model_input['query']['rgb']
uv_full = model_input['query']['uv']
nrays = uv_full.size(2)
chunks = nrays // 512 + 1
z, rel_pose, flow = model.get_z(model_input)
rgb_chunks = torch.chunk(rgb_full, chunks, dim=2)
uv_chunks = torch.chunk(uv_full, chunks, dim=2)
model_outputs = []
for rgb_chunk, uv_chunk in zip(rgb_chunks, uv_chunks):
model_input['query']['rgb'] = rgb_chunk
model_input['query']['uv'] = uv_chunk
model_output = model(model_input, z=z,rel_pose=rel_pose,val=True, flow=flow)
del model_output['z']
del model_output['coords']
del model_output['at_wts']
model_output['pixel_val'] = model_output['pixel_val'].cpu()
model_outputs.append(model_output)
model_output_copy = model_output
model_output_full = {}
for k in model_outputs[0].keys():
if k =='rel_pose' or k =='gt_rel_pose' or k =='flow' or k == 'cyclic_consistency_error':
continue
outputs = [model_output[k] for model_output in model_outputs]
if k == "pixel_val":
val = torch.cat(outputs, dim=-3)
elif k == 'mask_c2' or k=='matchability_cycle_mask':
val = torch.cat(outputs, dim=-1)
else:
val = torch.cat(outputs, dim=-2)
model_output_full[k] = val
model_output = model_output_full
model_output['rel_pose'] = model_output_copy['rel_pose']
model_output['gt_rel_pose'] = model_output_copy['gt_rel_pose']
model_output['flow'] = model_output_copy['flow']
model_input['query']['rgb'] = rgb_full
val_loss, val_loss_smry = val_loss_fn(model_input,model_output, gt, ITER =step, val=True, model=model)
for name, value in val_loss.items():
val_losses[name].append(value)
break
except:
continue
for loss_name, loss in val_losses.items():
single_loss = np.mean(np.concatenate([l.reshape(-1).cpu().numpy() for l in loss], axis=0))
if rank == 0:
writer.add_scalar('val_' + loss_name, single_loss, total_steps)
if rank == 0:
if val_summary_fn is not None:
val_summary_fn(model, model_input, gt, val_loss_smry, model_output, writer, total_steps, 'val_', img_shape=(model.H, model.W), n_view=n_view)
if (not total_steps % 1000):
rgb_full = model_input['query']['rgb']
cam2world = model_input['query']['cam2world']
cam2world = torch.matmul(torch.inverse(model_input['context']['cam2world']), cam2world)
model_input['query']['intrinsics'] = model_input['query']['intrinsics'][:1]
model_input['context']['intrinsics'] = model_input['context']['intrinsics'][:1]
model_input['context']['cam2world'] = torch.matmul(torch.inverse(model_input['context']['cam2world']), model_input['context']['cam2world'])[:1]
model_input['context']['rgb'] = model_input['context']['rgb'][:1]
z = [zi[:n_view] for zi in z]
model.train()
if (iters_til_checkpoint is not None) and (not total_steps % iters_til_checkpoint) and rank == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict()},
os.path.join(checkpoints_dir, 'model_epoch_%04d_iter_%06d.pth' % (epoch, total_steps)))
total_steps += 1
if max_steps is not None and total_steps == max_steps:
break
if max_steps is not None and total_steps == max_steps:
break
if rank == 0:
torch.save({'model': model.state_dict(), 'optimizer': optimizer.state_dict()},
os.path.join(checkpoints_dir, 'model_final.pth'))
return model, optimizer