diff --git a/python/paddle/optimizer/adam.py b/python/paddle/optimizer/adam.py index 82b100da7573b..f3e0ef1fba81a 100644 --- a/python/paddle/optimizer/adam.py +++ b/python/paddle/optimizer/adam.py @@ -96,6 +96,7 @@ class Adam(Optimizer): Examples: .. code-block:: python + :name: code-example1 import paddle @@ -110,6 +111,7 @@ class Adam(Optimizer): adam.clear_grad() .. code-block:: python + :name: code-example2 # Adam with beta1/beta2 as Tensor and weight_decay as float import paddle diff --git a/python/paddle/optimizer/lr.py b/python/paddle/optimizer/lr.py index 681ff33ca6795..580c545ef3439 100644 --- a/python/paddle/optimizer/lr.py +++ b/python/paddle/optimizer/lr.py @@ -126,6 +126,18 @@ def step(self, epoch=None): Returns: None + Examples: + .. code-block:: python + import paddle + value = paddle.arange(26, dtype='float32') + a = paddle.reshape(value, [2, 13]) + linear = paddle.nn.Linear(13, 5) + adadelta = paddle.optimizer.Adadelta(learning_rate=0.0003, epsilon=1e-06, rho=0.95, + parameters = linear.parameters()) + out = linear(a) + out.backward() + adadelta.step() + adadelta.clear_grad() """ if epoch is None: self.last_epoch += 1 @@ -240,7 +252,9 @@ class NoamDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -259,7 +273,12 @@ class NoamDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -343,7 +362,9 @@ class PiecewiseDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -362,7 +383,12 @@ class PiecewiseDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -433,11 +459,11 @@ class NaturalExpDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np - - # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5, gamma=0.1, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) @@ -452,7 +478,12 @@ class NaturalExpDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -515,7 +546,9 @@ class InverseTimeDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -534,7 +567,12 @@ class InverseTimeDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -611,7 +649,9 @@ class PolynomialDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -630,7 +670,12 @@ class PolynomialDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -735,7 +780,9 @@ class LinearWarmup(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -755,7 +802,12 @@ class LinearWarmup(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -868,7 +920,9 @@ class ExponentialDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -887,7 +941,12 @@ class ExponentialDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -959,7 +1018,9 @@ class MultiStepDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -978,7 +1039,12 @@ class MultiStepDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1066,7 +1132,9 @@ class StepDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1085,7 +1153,12 @@ class StepDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1163,7 +1236,9 @@ class LambdaDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1182,7 +1257,12 @@ class LambdaDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1264,7 +1344,9 @@ class ReduceOnPlateau(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1283,7 +1365,12 @@ class ReduceOnPlateau(LRScheduler): scheduler.step(loss) # If you update learning rate each step # scheduler.step(loss) # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1488,7 +1575,9 @@ class CosineAnnealingDecay(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1507,7 +1596,12 @@ class CosineAnnealingDecay(LRScheduler): scheduler.step() # If you update learning rate each step # scheduler.step() # If you update learning rate each epoch - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1686,7 +1780,9 @@ class OneCycleLR(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1704,7 +1800,12 @@ class OneCycleLR(LRScheduler): sgd.clear_gradients() scheduler.step() # You should update learning rate each step - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() @@ -1929,7 +2030,9 @@ class CyclicLR(LRScheduler): Examples: .. code-block:: python + :name: code-example1 + # Example1: train on default dynamic graph mode import paddle import numpy as np @@ -1947,7 +2050,12 @@ class CyclicLR(LRScheduler): sgd.clear_gradients() scheduler.step() # You should update learning rate each step - # train on static graph mode + .. code-block:: python + :name: code-example2 + + # Example2: train on static graph mode + import paddle + import numpy as np paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program()