-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimalBatch8.py
36 lines (27 loc) · 962 Bytes
/
optimalBatch8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import optimalSampling
class LinearFunction3(optimalSampling.FittingFunctionLS):
# y = b0+b1*x+b2*x2+b3*x^3
def getFunction(self, xn, beta):
return beta[0]+beta[1]*xn+beta[2]*xn*xn+beta[3]*xn*xn*xn
def getPartialDerivative1(self, xn, yn, beta, i):
if i==0:
return 1
elif i==1:
return xn
elif i==2:
return xn*xn
elif i==3:
return xn*xn*xn
h=LinearFunction3()
h.sigma2=0.1
trueBeta=np.asarray([1,-1,1,-1])
X=np.asarray([[0],[1],[2]])
y=h.simulateFunctionAtMultiplePoints(X, trueBeta, True)
stepx=0.01
def CramerRaoBound1(I):
return optimalSampling.CramerRaoBound(I,1)
evaluator0=optimalSampling.FIMEvaluator()
evaluator1=optimalSampling.FIMEvaluator(CramerRaoBound1)
evaluator2=optimalSampling.VarEvaluator()
optimalSampling.simulateProcess(h,trueBeta,X,y,np.asarray([0,0,0,0]),30,np.mgrid[0:2+stepx:stepx],evaluator0, verbose=True)