-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
63 lines (48 loc) · 1.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# General imports
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import glob
import numpy as np
import tensorflow as tf
import wandb
from absl import app, flags
from ml_collections.config_flags import config_flags
from sklearn.metrics import accuracy_score
from tensorflow.keras.models import load_model
# Import modules
from ssl_study.data import (GetDataloader, GetTestDataloader, download_dataset,
preprocess_dataframe,
preprocess_dataframe_unlabelled)
FLAGS = flags.FLAGS
CONFIG = config_flags.DEFINE_config_file("config")
def main(_):
with wandb.init(
entity=CONFIG.value.wandb_config.entity,
project=CONFIG.value.wandb_config.project,
job_type="test",
config=CONFIG.value.to_dict(),
):
# Access all hyperparameter values through wandb.config
config = wandb.config
# Seed Everything
tf.random.set_seed(config.seed)
# Load the dataframe
test_df = download_dataset("test", "labelled-dataset")
# Preprocess the DataFrame
test_paths = preprocess_dataframe(test_df, is_labelled=False)
# Build dataloader
dataset = GetTestDataloader(config)
testloader = dataset.dataloader(test_paths)
# Load the model
model = load_model(config.modelcheckpoint_config["filepath"], compile=True)
# Generate predictions
predictions = model.predict(testloader)
# Test Accuracy
test_accuracy = accuracy_score(
np.array(test_df["label"]), np.argmax(predictions, axis=1)
)
# wandb log test accuracy
if wandb.run is not None:
wandb.log({"test_accuracy": test_accuracy})
if __name__ == "__main__":
app.run(main)