-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimclrv1_pretext.py
101 lines (84 loc) · 3.19 KB
/
simclrv1_pretext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# General imports
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import glob
import numpy as np
import tensorflow as tf
import tensorflow_similarity as tfsim
import wandb
from absl import app, flags
from ml_collections.config_flags import config_flags
from sklearn.utils import class_weight
from tensorflow.keras.callbacks import LearningRateScheduler
from wandb.keras import WandbCallback
from ssl_study import callbacks
# Import modules
from ssl_study.data import download_dataset, preprocess_dataframe
from ssl_study.simclrv1.pretext.data import GetDataloader
from ssl_study.simclrv1.pretext.models import SimCLRv1Model
from ssl_study.simclrv1.pretext.pipeline import SimCLRv1Pipeline
FLAGS = flags.FLAGS
CONFIG = config_flags.DEFINE_config_file("config")
flags.DEFINE_bool("wandb", False, "MLOps pipeline for our classifier.")
flags.DEFINE_bool("log_model", False, "Checkpoint model while training.")
flags.DEFINE_bool(
"log_eval", False, "Log model prediction, needs --wandb argument as well."
)
def main(_):
# Get configs from the config file.
config = CONFIG.value
CALLBACKS = []
sync_tensorboard = None
if config.callback_config.use_tensorboard:
sync_tensorboard = True
# Initialize a Weights and Biases run.
if FLAGS.wandb:
run = wandb.init(
entity=CONFIG.value.wandb_config.entity,
project=CONFIG.value.wandb_config.project,
job_type="train",
config=config.to_dict(),
sync_tensorboard=sync_tensorboard,
)
# Initialize W&B metrics logger callback.
CALLBACKS += [callbacks.WandBMetricsLogger()]
# Load the Dataframes
inclass_df = download_dataset("in-class", "unlabelled-dataset")
# Preprocess the DataFrames
inclass_paths = preprocess_dataframe(inclass_df, is_labelled=False)
train_path = inclass_paths[2000:]
val_path = inclass_paths[0:2000]
# Build dataloaders
dataset = GetDataloader(config)
inclasstrainloader = dataset.get_dataloader(train_path)
inclassvalloader = dataset.get_dataloader(val_path)
# Model
tf.keras.backend.clear_session()
backbone = SimCLRv1Model(config).get_backbone()
# backbone.summary()
projector = SimCLRv1Model(config).get_projector(
input_dim=backbone.output.shape[-1],
dim=config.model_config.projection_DIM,
num_layers=config.model_config.projection_layers,
)
# projector.summary()
contrastive_model = tfsim.models.ContrastiveModel(
backbone=backbone,
projector=projector,
algorithm="simclr",
)
contrastive_model.summary()
# Initialize Model checkpointing callback
callback_config = config.callback_config
if FLAGS.log_model:
# Custom W&B model checkpoint callback
model_checkpointer = callbacks.get_model_checkpoint_callback(config)
CALLBACKS += [model_checkpointer]
if callback_config.use_tensorboard:
CALLBACKS += [tf.keras.callbacks.TensorBoard()]
# Build the pipeline
pipeline = SimCLRv1Pipeline(contrastive_model, config, CALLBACKS)
# Train and Evaluate
pipeline.train_and_evaluate(inclass_paths, inclasstrainloader, inclassvalloader)
if __name__ == "__main__":
app.run(main)