forked from kilic/bls12-381
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pairing.go
363 lines (322 loc) · 10.4 KB
/
pairing.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
package bls12381
type pair struct {
g1 *PointG1
g2 *PointG2
}
func newPair(g1 *PointG1, g2 *PointG2) pair {
return pair{g1, g2}
}
// Engine is BLS12-381 elliptic curve pairing engine
type Engine struct {
G1 *G1
G2 *G2
fp12 *fp12
fp2 *fp2
pairingEngineTemp
pairs []pair
}
// NewEngine creates new pairing engine insteace.
func NewEngine() *Engine {
fp2 := newFp2()
fp6 := newFp6(fp2)
fp12 := newFp12(fp6)
g1 := NewG1()
g2 := newG2(fp2)
return &Engine{
fp2: fp2,
fp12: fp12,
G1: g1,
G2: g2,
pairingEngineTemp: newEngineTemp(),
}
}
type pairingEngineTemp struct {
t2 [10]*fe2
t12 [9]fe12
}
func newEngineTemp() pairingEngineTemp {
t2 := [10]*fe2{}
for i := 0; i < 10; i++ {
t2[i] = &fe2{}
}
t12 := [9]fe12{}
return pairingEngineTemp{t2, t12}
}
// AddPair adds a g1, g2 point pair to pairing engine
func (e *Engine) AddPair(g1 *PointG1, g2 *PointG2) *Engine {
p := newPair(g1, g2)
if !e.isZero(p) {
e.affine(p)
e.pairs = append(e.pairs, p)
}
return e
}
// AddPairInv adds a G1, G2 point pair to pairing engine. G1 point is negated.
func (e *Engine) AddPairInv(g1 *PointG1, g2 *PointG2) *Engine {
ng1 := e.G1.New().Set(g1)
e.G1.Neg(ng1, g1)
e.AddPair(ng1, g2)
return e
}
// Reset deletes added pairs.
func (e *Engine) Reset() *Engine {
e.pairs = []pair{}
return e
}
func (e *Engine) isZero(p pair) bool {
return e.G1.IsZero(p.g1) || e.G2.IsZero(p.g2)
}
func (e *Engine) affine(p pair) {
e.G1.Affine(p.g1)
e.G2.Affine(p.g2)
}
func (e *Engine) doublingStep(coeff *[3]fe2, r *PointG2) {
// Adaptation of Formula 3 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &r[0], &r[1])
fp2.mulByFq(t[0], t[0], twoInv)
fp2.square(t[1], &r[1])
fp2.square(t[2], &r[2])
fp2.double(t[7], t[2])
fp2.add(t[7], t[7], t[2])
fp2.mulByB(t[3], t[7])
fp2.double(t[4], t[3])
fp2.add(t[4], t[4], t[3])
fp2.add(t[5], t[1], t[4])
fp2.mulByFq(t[5], t[5], twoInv)
fp2.add(t[6], &r[1], &r[2])
fp2.square(t[6], t[6])
fp2.add(t[7], t[2], t[1])
fp2.sub(t[6], t[6], t[7])
fp2.sub(&coeff[0], t[3], t[1])
fp2.square(t[7], &r[0])
fp2.sub(t[4], t[1], t[4])
fp2.mul(&r[0], t[4], t[0])
fp2.square(t[2], t[3])
fp2.double(t[3], t[2])
fp2.add(t[3], t[3], t[2])
fp2.square(t[5], t[5])
fp2.sub(&r[1], t[5], t[3])
fp2.mul(&r[2], t[1], t[6])
fp2.double(t[0], t[7])
fp2.add(&coeff[1], t[0], t[7])
fp2.neg(&coeff[2], t[6])
}
func (e *Engine) additionStep(coeff *[3]fe2, r, q *PointG2) {
// Algorithm 12 in https://eprint.iacr.org/2010/526.pdf
fp2 := e.fp2
t := e.t2
fp2.mul(t[0], &q[1], &r[2])
fp2.neg(t[0], t[0])
fp2.add(t[0], t[0], &r[1])
fp2.mul(t[1], &q[0], &r[2])
fp2.neg(t[1], t[1])
fp2.add(t[1], t[1], &r[0])
fp2.square(t[2], t[0])
fp2.square(t[3], t[1])
fp2.mul(t[4], t[1], t[3])
fp2.mul(t[2], &r[2], t[2])
fp2.mul(t[3], &r[0], t[3])
fp2.double(t[5], t[3])
fp2.sub(t[5], t[4], t[5])
fp2.add(t[5], t[5], t[2])
fp2.mul(&r[0], t[1], t[5])
fp2.sub(t[2], t[3], t[5])
fp2.mul(t[2], t[2], t[0])
fp2.mul(t[3], &r[1], t[4])
fp2.sub(&r[1], t[2], t[3])
fp2.mul(&r[2], &r[2], t[4])
fp2.mul(t[2], t[1], &q[1])
fp2.mul(t[3], t[0], &q[0])
fp2.sub(&coeff[0], t[3], t[2])
fp2.neg(&coeff[1], t[0])
coeff[2].set(t[1])
}
func (e *Engine) preCompute(ellCoeffs *[68][3]fe2, twistPoint *PointG2) {
// Algorithm 5 in https://eprint.iacr.org/2019/077.pdf
if e.G2.IsZero(twistPoint) {
return
}
r := new(PointG2).Set(twistPoint)
j := 0
for i := int(x.BitLen() - 2); i >= 0; i-- {
e.doublingStep(&ellCoeffs[j], r)
if x.Bit(i) != 0 {
j++
ellCoeffs[j] = fe6{}
e.additionStep(&ellCoeffs[j], r, twistPoint)
}
j++
}
}
func (e *Engine) millerLoop(f *fe12) {
pairs := e.pairs
ellCoeffs := make([][68][3]fe2, len(pairs))
for i := 0; i < len(pairs); i++ {
e.preCompute(&ellCoeffs[i], pairs[i].g2)
}
fp12, fp2 := e.fp12, e.fp2
t := e.t2
f.one()
j := 0
for i := 62; /* x.BitLen() - 2 */ i >= 0; i-- {
if i != 62 {
fp12.square(f, f)
}
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
if x.Bit(i) != 0 {
j++
for i := 0; i <= len(pairs)-1; i++ {
fp2.mulByFq(t[0], &ellCoeffs[i][j][2], &pairs[i].g1[1])
fp2.mulByFq(t[1], &ellCoeffs[i][j][1], &pairs[i].g1[0])
fp12.mulBy014Assign(f, &ellCoeffs[i][j][0], t[1], t[0])
}
}
j++
}
fp12.conjugate(f, f)
}
// exp raises element by x = -15132376222941642752
func (e *Engine) exp(c, a *fe12) {
// Adapted from https://github.com/supranational/blst/blob/master/src/pairing.c
fp12 := e.fp12
chain := func(n int) {
fp12.mulAssign(c, a)
for i := 0; i < n; i++ {
fp12.cyclotomicSquare(c, c)
}
}
fp12.cyclotomicSquare(c, a) // (a ^ 2)
chain(2) // (a ^ (2 + 1)) ^ (2 ^ 2) = a ^ 12
chain(3) // (a ^ (12 + 1)) ^ (2 ^ 3) = a ^ 104
chain(9) // (a ^ (104 + 1)) ^ (2 ^ 9) = a ^ 53760
chain(32) // (a ^ (53760 + 1)) ^ (2 ^ 32) = a ^ 230901736800256
chain(16) // (a ^ (230901736800256 + 1)) ^ (2 ^ 16) = a ^ 15132376222941642752
// invert chain result since x is negative
fp12.conjugate(c, c)
}
func (e *Engine) finalExp(f *fe12) {
fp12, t := e.fp12, e.t12
// easy part
fp12.inverse(&t[1], f) // t1 = f0 ^ -1
fp12.conjugate(&t[0], f) // t0 = f0 ^ p6
fp12.mul(&t[2], &t[0], &t[1]) // t2 = f0 ^ (p6 - 1)
t[1].set(&t[2]) // t1 = f0 ^ (p6 - 1)
fp12.frobeniusMap2(&t[2]) // t2 = f0 ^ ((p6 - 1) * p2)
fp12.mulAssign(&t[2], &t[1]) // t2 = f0 ^ ((p6 - 1) * (p2 + 1))
// f = f0 ^ ((p6 - 1) * (p2 + 1))
// hard part
// https://eprint.iacr.org/2016/130
// On the Computation of the Optimal Ate Pairing at the 192-bit Security Level
// Section 3
// f ^ d = λ_0 + λ_1 * p + λ_2 * p^2 + λ_3 * p^3
fp12.conjugate(&t[1], &t[2])
fp12.cyclotomicSquare(&t[1], &t[1]) // t1 = f ^ (-2)
e.exp(&t[3], &t[2]) // t3 = f ^ (u)
fp12.cyclotomicSquare(&t[4], &t[3]) // t4 = f ^ (2u)
fp12.mul(&t[5], &t[1], &t[3]) // t5 = f ^ (u - 2)
e.exp(&t[1], &t[5]) // t1 = f ^ (u^2 - 2 * u)
e.exp(&t[0], &t[1]) // t0 = f ^ (u^3 - 2 * u^2)
e.exp(&t[6], &t[0]) // t6 = f ^ (u^4 - 2 * u^3)
fp12.mulAssign(&t[6], &t[4]) // t6 = f ^ (u^4 - 2 * u^3 + 2 * u)
e.exp(&t[4], &t[6]) // t4 = f ^ (u^4 - 2 * u^3 + 2 * u^2)
fp12.conjugate(&t[5], &t[5]) // t5 = f ^ (2 - u)
fp12.mulAssign(&t[4], &t[5]) // t4 = f ^ (u^4 - 2 * u^3 + 2 * u^2 - u + 2)
fp12.mulAssign(&t[4], &t[2]) // f_λ_0 = t4 = f ^ (u^4 - 2 * u^3 + 2 * u^2 - u + 3)
fp12.conjugate(&t[5], &t[2]) // t5 = f ^ (-1)
fp12.mulAssign(&t[5], &t[6]) // t1 = f ^ (u^4 - 2 * u^3 + 2 * u - 1)
fp12.frobeniusMap1(&t[5]) // f_λ_1 = t1 = f ^ ((u^4 - 2 * u^3 + 2 * u - 1) ^ p)
fp12.mulAssign(&t[3], &t[0]) // t3 = f ^ (u^3 - 2 * u^2 + u)
fp12.frobeniusMap2(&t[3]) // f_λ_2 = t3 = f ^ ((u^3 - 2 * u^2 + u) ^ p^2)
fp12.mulAssign(&t[1], &t[2]) // t1 = f ^ (u^2 - 2 * u + 1)
fp12.frobeniusMap3(&t[1]) // f_λ_3 = t1 = f ^ ((u^2 - 2 * u + 1) ^ p^3)
// out = f ^ (λ_0 + λ_1 + λ_2 + λ_3)
fp12.mulAssign(&t[3], &t[1])
fp12.mulAssign(&t[3], &t[5])
fp12.mul(f, &t[3], &t[4])
}
// expDrop raises element by x = -15132376222941642752 / 2
// func (e *Engine) expDrop(c, a *fe12) {
// // Adapted from https://github.com/supranational/blst/blob/master/src/pairing.c
// fp12 := e.fp12
// chain := func(n int) {
// fp12.mulAssign(c, a)
// for i := 0; i < n; i++ {
// fp12.cyclotomicSquare(c, c)
// }
// }
// fp12.cyclotomicSquare(c, a) // (a ^ 2)
// chain(2) // (a ^ (2 + 1)) ^ (2 ^ 2) = a ^ 12
// chain(3) // (a ^ (12 + 1)) ^ (2 ^ 3) = a ^ 104
// chain(9) // (a ^ (104 + 1)) ^ (2 ^ 9) = a ^ 53760
// chain(32) // (a ^ (53760 + 1)) ^ (2 ^ 32) = a ^ 230901736800256
// chain(15) // (a ^ (230901736800256 + 1)) ^ (2 ^ 16) = a ^ 15132376222941642752 / 2
// // invert chin result since x is negative
// fp12.conjugate(c, c)
// }
// func (e *Engine) finalExp(f *fe12) {
// fp12, t := e.fp12, e.t12
// // easy part
// fp12.inverse(&t[1], f) // t1 = f0 ^ -1
// fp12.conjugate(&t[0], f) // t0 = f0 ^ p6
// fp12.mul(&t[2], &t[0], &t[1]) // t2 = f0 ^ (p6 - 1)
// t[1].set(&t[2]) // t1 = f0 ^ (p6 - 1)
// fp12.frobeniusMap2(&t[2]) // t2 = f0 ^ ((p6 - 1) * p2)
// fp12.mulAssign(&t[2], &t[1]) // t2 = f0 ^ ((p6 - 1) * (p2 + 1))
// // f = f0 ^ ((p6 - 1) * (p2 + 1))
// // hard part
// // https://eprint.iacr.org/2016/130
// // On the Computation of the Optimal Ate Pairing at the 192-bit Security Level
// // Section 4, Algorithm 2
// // f ^ d = λ_0 + λ_1 * p + λ_2 * p^2 + λ_3 * p^3
// f.set(&t[2])
// fp12.cyclotomicSquare(&t[0], f) // t0 = f ^ (2)
// e.exp(&t[1], &t[0]) // t1 = f ^ (2 * u)
// e.expDrop(&t[2], &t[1]) // t2 = f ^ (u ^ 2)
// fp12.conjugate(&t[3], f) // t3 = f ^ (-1)
// fp12.mulAssign(&t[1], &t[3]) // t1 = f ^ (2 * u - 1)
// fp12.conjugate(&t[1], &t[1]) // t1 = f ^ (-2 * u + 1 )
// fp12.mulAssign(&t[1], &t[2]) // f ^ λ_3 = &t[1] = f ^ (u^2 - 2 * u + 1)
// e.exp(&t[2], &t[1]) // f ^ λ_2 = &t[2] = f ^ (u^3 - 2 * u^2 + u)
// e.exp(&t[3], &t[2]) // t3 = f ^ (u^4 - 2 * u^3 + u^2)
// fp12.conjugate(&t[4], &t[1]) // t4 = f ^ (-λ_3)
// fp12.mulAssign(&t[3], &t[4]) // t2 = f ^ (λ_1)
// fp12.frobeniusMap3(&t[1]) // t1 = f ^ (λ_3 * (p ^ 3))
// fp12.frobeniusMap2(&t[2]) // t2 = f ^ (λ_2 * (p ^ 2))
// fp12.mulAssign(&t[1], &t[2]) // t1 = f ^ (λ_2 * (p ^ 2) + λ_3 * (p ^ 3))
// e.exp(&t[2], &t[3]) // t2 = f ^ (λ_1 * u)
// fp12.mulAssign(&t[2], &t[0]) // t2 = f ^ (λ_1 * u + 2)
// fp12.mulAssign(&t[2], f) // t2 = f ^ (λ_0 * u)
// // out = f ^ (λ_0 + λ_1 + λ_2 + λ_3)
// fp12.mulAssign(&t[1], &t[2])
// fp12.frobeniusMap1(&t[3])
// fp12.mul(f, &t[1], &t[3])
// }
func (e *Engine) calculate() *fe12 {
f := e.fp12.one()
if len(e.pairs) == 0 {
return f
}
e.millerLoop(f)
e.finalExp(f)
return f
}
// Check computes pairing and checks if result is equal to one
func (e *Engine) Check() bool {
return e.calculate().isOne()
}
// Result computes pairing and returns target group element as result.
func (e *Engine) Result() *E {
r := e.calculate()
e.Reset()
return r
}
// GT returns target group instance.
func (e *Engine) GT() *GT {
return NewGT()
}