forked from kilic/bls12-381
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gt.go
106 lines (87 loc) · 2.46 KB
/
gt.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
package bls12381
import (
"errors"
"math/big"
)
// E is type for target group element
type E = fe12
// GT is type for target multiplicative group GT.
type GT struct {
fp12 *fp12
}
// Set copies given value into the destination
func (e *E) Set(e2 *E) *E {
return e.set(e2)
}
// One sets a new target group element to one
func (e *E) One() *E {
e = new(fe12).one()
return e
}
// IsOne returns true if given element equals to one
func (e *E) IsOne() bool {
return e.isOne()
}
// Equal returns true if given two element is equal, otherwise returns false
func (g *E) Equal(g2 *E) bool {
return g.equal(g2)
}
// NewGT constructs new target group instance.
func NewGT() *GT {
fp12 := newFp12(nil)
return >{fp12}
}
// Q returns group order in big.Int.
func (g *GT) Q() *big.Int {
return new(big.Int).Set(q)
}
// FromBytes expects 576 byte input and returns target group element
// FromBytes returns error if given element is not on correct subgroup.
func (g *GT) FromBytes(in []byte) (*E, error) {
e, err := g.fp12.fromBytes(in)
if err != nil {
return nil, err
}
if !g.IsValid(e) {
return e, errors.New("invalid element")
}
return e, nil
}
// ToBytes serializes target group element.
func (g *GT) ToBytes(e *E) []byte {
return g.fp12.toBytes(e)
}
// IsValid checks whether given target group element is in correct subgroup.
func (g *GT) IsValid(e *E) bool {
r := g.New()
g.fp12.exp(r, e, q)
return r.isOne()
}
// New initializes a new target group element which is equal to one
func (g *GT) New() *E {
return new(E).One()
}
// Add adds two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Add(c, a, b *E) {
g.fp12.add(c, a, b)
}
// Sub subtracts two field element `a` and `b`, and assigns the result to the element in first argument.
func (g *GT) Sub(c, a, b *E) {
g.fp12.sub(c, a, b)
}
// Mul multiplies two field element `a` and `b` and assigns the result to the element in first argument.
func (g *GT) Mul(c, a, b *E) {
g.fp12.mul(c, a, b)
}
// Square squares an element `a` and assigns the result to the element in first argument.
func (g *GT) Square(c, a *E) {
g.fp12.cyclotomicSquare(c, a)
}
// Exp exponents an element `a` by a scalar `s` and assigns the result to the element in first argument.
func (g *GT) Exp(c, a *E, s *big.Int) {
g.fp12.cyclotomicExp(c, a, s)
}
// Inverse inverses an element `a` and assigns the result to the element in first argument.
func (g *GT) Inverse(c, a *E) {
g.fp12.inverse(c, a)
}