-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrosic_TeeBeeFilter.ino
294 lines (248 loc) · 9.81 KB
/
rosic_TeeBeeFilter.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#include "rosic_TeeBeeFilter.h"
//-------------------------------------------------------------------------------------------------
// construction/destruction:
TeeBeeFilter::TeeBeeFilter()
{
cutoff = 1000.0f;
drive = 0.1f;
driveFactor = 1.0f;
resonanceRaw = 0.0f;
resonanceSkewed = 0.0f;
g = 1.0f;
sampleRate = SAMPLE_RATE;
twoPiOverSampleRate = 2.0f*PI/sampleRate;
feedbackHighpass.setMode(OnePoleFilter::HIGHPASS);
feedbackHighpass.setCutoff(100.0f);
// SetMode(LP_18);
SetMode(TB_303);
calculateCoefficientsExact();
Init();
}
TeeBeeFilter::~TeeBeeFilter()
{
}
//-------------------------------------------------------------------------------------------------
// parameter settings:
void TeeBeeFilter::SetSampleRate(float newSampleRate)
{
if( newSampleRate > 0.0 )
sampleRate = newSampleRate;
twoPiOverSampleRate = 2.0*PI/sampleRate;
highLimit = sampleRate / 4.18f;
feedbackHighpass.setSampleRate(newSampleRate);
calculateCoefficientsExact();
}
void TeeBeeFilter::SetMode(int newMode)
{
if( newMode >= 0 && newMode < NUM_MODES )
{
mode = newMode;
switch(mode)
{
case FLAT: c0 = 1.0f; c1 = 0.0f; c2 = 0.0f; c3 = 0.0f; c4 = 0.0f; break;
case LP_6: c0 = 0.0f; c1 = 1.0f; c2 = 0.0f; c3 = 0.0f; c4 = 0.0f; break;
case LP_12: c0 = 0.0f; c1 = 0.0f; c2 = 1.0f; c3 = 0.0f; c4 = 0.0f; break;
case LP_18: c0 = 0.0f; c1 = 0.0f; c2 = 0.0f; c3 = 1.0f; c4 = 0.0f; break;
case LP_24: c0 = 0.0f; c1 = 0.0f; c2 = 0.0f; c3 = 0.0f; c4 = 1.0f; break;
case HP_6: c0 = 1.0f; c1 = -1.0f; c2 = 0.0f; c3 = 0.0f; c4 = 0.0f; break;
case HP_12: c0 = 1.0f; c1 = -2.0f; c2 = 1.0f; c3 = 0.0f; c4 = 0.0f; break;
case HP_18: c0 = 1.0f; c1 = -3.0f; c2 = 3.0f; c3 = -1.0f; c4 = 0.0f; break;
case HP_24: c0 = 1.0f; c1 = -4.0f; c2 = 6.0f; c3 = -4.0f; c4 = 1.0f; break;
case BP_12_12: c0 = 0.0f; c1 = 0.0f; c2 = 1.0f; c3 = -2.0f; c4 = 1.0f; break;
case BP_6_18: c0 = 0.0f; c1 = 0.0f; c2 = 0.0f; c3 = 1.0f; c4 = -1.0f; break;
case BP_18_6: c0 = 0.0f; c1 = 1.0f; c2 = -3.0f; c3 = 3.0f; c4 = -1.0f; break;
case BP_6_12: c0 = 0.0f; c1 = 0.0f; c2 = 1.0f; c3 = -1.0f; c4 = 0.0f; break;
case BP_12_6: c0 = 0.0f; c1 = 1.0f; c2 = -2.0f; c3 = 1.0f; c4 = 0.0f; break;
case BP_6_6: c0 = 0.0f; c1 = 1.0f; c2 = -1.0f; c3 = 0.0f; c4 = 0.0f; break;
default: c0 = 1.0f; c1 = 0.0f; c2 = 0.0f; c3 = 0.0f; c4 = 0.0f; // flat
}
}
calculateCoefficientsApprox4();
}
//-------------------------------------------------------------------------------------------------
// others:
//-----------------------------------------------------------------------------------------------
// inlined functions:
inline void TeeBeeFilter::SetCutoff(float newCutoff, bool updateCoefficients)
{
if ( newCutoff != cutoff )
{
if ( newCutoff < 200.0f ) // an absolute floor for the cutoff frequency - tweakable
cutoff = 200.0f;
else if ( newCutoff > highLimit ) // seems to be stable with the current settings, higher values may lead to nan, +inf or -inf during processing
cutoff = highLimit;
else
cutoff = newCutoff;
if ( updateCoefficients == true )
calculateCoefficientsApprox4();
}
}
inline void TeeBeeFilter::SetResonance(float newResonance, bool updateCoefficients)
{
resonanceRaw = newResonance;
// compens = 1.8f * (resonanceRaw + 0.25f) * one_div((resonanceRaw + 0.25f) * 0.75f + 0.113f); // gain compensation; one_div(x) = 1/x
resonanceSkewed = 1.02f * (1.0f - exp(-3.0f * resonanceRaw)) / (1.0f - exp(-3.0f));
if ( updateCoefficients == true )
calculateCoefficientsApprox4();
}
void TeeBeeFilter::SetDrive(float newDrive)
{
drive = newDrive + 0.01f;
}
inline void TeeBeeFilter::calculateCoefficientsExact()
{
// calculate intermediate variables:
float wc = twoPiOverSampleRate * cutoff;
float s, c;
//sinCos(wc, &s, &c); // c = cos(wc); s = sin(wc);
fast_sincos(wc, &s, &c); // c = cos(wc); s = sin(wc);
float t = tan(0.25f * (wc - PI));
float r = resonanceSkewed;
// calculate filter a1-coefficient tuned such the resonance frequency is just right:
float a1_fullRes = t * one_div(s - c * t);
// calculate filter a1-coefficient as if there were no resonance:
float x = exp(-wc);
float a1_noRes = -x;
// use a weighted sum between the resonance-tuned and no-resonance coefficient:
a1 = r * a1_fullRes + (1.0f - r) * a1_noRes;
// calculate the b0-coefficient from the condition that each stage should be a leaky
// integrator:
b0 = 1.0f + a1;
// calculate feedback factor by dividing the resonance parameter by the magnitude at the
// resonant frequency:
float gsq = b0 * b0 * one_div(1.0f + a1 * a1 + 2.0f * a1 * c);
k = r * one_div(gsq * gsq);
if ( mode == TB_303 )
k *= (4.25f);
}
inline void TeeBeeFilter::calculateCoefficientsApprox4()
{
// calculate intermediate variables:
float wc = twoPiOverSampleRate * cutoff;
float wc2 = wc * wc;
float r = resonanceSkewed;
float tmp;
// compute the filter coefficient via a 12th order polynomial approximation (polynomial
// evaluation is done with a Horner-rule alike scheme with nested quadratic factors in the hope
// for potentially better parallelization compared to Horner's rule as is):
const float pa12 = -1.341281325101042e-02;
const float pa11 = 8.168739417977708e-02;
const float pa10 = -2.365036766021623e-01;
const float pa09 = 4.439739664918068e-01;
const float pa08 = -6.297350825423579e-01;
const float pa07 = 7.529691648678890e-01;
const float pa06 = -8.249882473764324e-01;
const float pa05 = 8.736418933533319e-01;
const float pa04 = -9.164580250284832e-01;
const float pa03 = 9.583192455599817e-01;
const float pa02 = -9.999994950291231e-01;
const float pa01 = 9.999999927726119e-01;
const float pa00 = -9.999999999857464e-01;
tmp = wc2 * pa12 + pa11 * wc + pa10;
tmp = wc2 * tmp + pa09 * wc + pa08;
tmp = wc2 * tmp + pa07 * wc + pa06;
tmp = wc2 * tmp + pa05 * wc + pa04;
tmp = wc2 * tmp + pa03 * wc + pa02;
a1 = wc2 * tmp + pa01 * wc + pa00;
b0 = 1.0f + a1;
// compute the scale factor for the resonance parameter (the factor to obtain k from r) via an
// 8th order polynomial approximation:
const float pr8 = -4.554677015609929e-05;
const float pr7 = -2.022131730719448e-05;
const float pr6 = 2.784706718370008e-03;
const float pr5 = 2.079921151733780e-03;
const float pr4 = -8.333236384240325e-02;
const float pr3 = -1.666668203490468e-01;
const float pr2 = 1.000000012124230e+00;
const float pr1 = 3.999999999650040e+00;
const float pr0 = 4.000000000000113e+00;
tmp = wc2 * pr8 + pr7 * wc + pr6;
tmp = wc2 * tmp + pr5 * wc + pr4;
tmp = wc2 * tmp + pr3 * wc + pr2;
tmp = wc2 * tmp + pr1 * wc + pr0; // this is now the scale factor
k = r * tmp;
g = 1.0f;
if ( mode == TB_303 )
{
float fx = wc * ONE_DIV_SQRT2 * ONE_DIV_TWOPI;
b0 = (0.00045522346f + 6.1922189f * fx) * one_div(1.0f + 12.358354f * fx + 4.4156345f * (fx * fx));
k = fx * (fx * (fx * (fx * (fx * (fx + 7198.6997f) - 5837.7917f) - 476.47308f) + 614.95611f) + 213.87126f) + 16.998792f;
g = k * 0.05882352f; // 17 reciprocal
g = (g - 1.0f) * r + 1.0f; // r is 0 to 1.0
g = (g * (1.0f + r));
k = k * r; // k is ready now
}
}
inline float TeeBeeFilter::Process(float in)
{
float y0;
if( mode == TB_303 )
{
//y0 = in - feedbackHighpass.getSample(k * shape(y4));
y0 = in - feedbackHighpass.getSample(k*y4);
//y0 = in - k*shape(y4);
//y0 = in-k*y4;
y1 += 2*b0*(y0-y1+y2);
y2 += b0*(y1-2*y2+y3);
y3 += b0*(y2-2*y3+y4);
y4 += b0*(y3-2*y4);
return 2*g*y4;
//return 3*y4;
}
// apply drive and feedback to obtain the filter's input signal:
//float y0 = inputFilter.getSample(0.125*driveFactor*in) - feedbackHighpass.getSample(k*y4);
y0 = 0.125f * driveFactor * in - feedbackHighpass.getSample(k*y4);
y1 = y0 + a1*(y0-y1);
y2 = y1 + a1*(y1-y2);
y3 = y2 + a1*(y2-y3);
y4 = y3 + a1*(y3-y4); // \todo: performance test both versions of the ladder
//y4 = shape(y3 + a1*(y3-y4)); // \todo: performance test both versions of the ladder
return 8.0f * (c0*y0 + c1*y1 + c2*y2 + c3*y3 + c4*y4);;
}
inline void TeeBeeFilter::sinCos(float x, float* sinResult, float* cosResult)
{
#ifdef __GNUC__ // \todo assembly-version causes compiler errors on gcc
*sinResult = sin(x);
*cosResult = cos(x);
#else
float s, c; // do we need these intermediate variables?
__asm fld x
__asm fsincos
__asm fstp c
__asm fstp s
*sinResult = s;
*cosResult = c;
#endif
}
inline float TeeBeeFilter::shape(float x)
{
// return tanhApprox(x); // \todo: find some more suitable nonlinearity here
//return x; // test
// const float r6 = 1.0/6.0;
// x = clip<float>(x, -SQRT2, SQRT2);
// return x - r6*x*x*x;
//return clip(x, -1.0, 1.0);
return fast_shape(x*2.0f);
}
void TeeBeeFilter::Init() {
feedbackHighpass.reset();
y1 = 0.0f;
y2 = 0.0f;
y3 = 0.0f;
y4 = 0.0f;
SetDrive(0.11f);
SetResonance(0.5f, false);
SetCutoff(1000.0f, true);
}
void TeeBeeFilter::Init(float sr)
{
feedbackHighpass.reset();
SetSampleRate(sr);
y1 = 0.0f;
y2 = 0.0f;
y3 = 0.0f;
y4 = 0.0f;
SetDrive(0.11f);
SetResonance(0.5f, false);
SetCutoff(1000.0f, true);
}