diff --git a/R_buildignore/developer_commands.R b/R_buildignore/developer_commands.R index 393d850..26ed77d 100644 --- a/R_buildignore/developer_commands.R +++ b/R_buildignore/developer_commands.R @@ -37,8 +37,12 @@ devtools::check() # run_dont_test = TRUE rcmdcheck::rcmdcheck() # build_args = "--run-donttest" devtools::build() #devtools::revdep(pkg = "fitHeavyTail") # to check reverse dependencies -#devtools::check_win_release() #to check under windows +#devtools::check_win_release() # to check under Windows +#devtools::check_mac_release() # to check under Mac OS +#rhub::check_for_cran(platform = "macos-highsierra-release-cran") #R CMD build . # this is to generate tarball #R CMD check fitHeavyTail_0.2.0.tar.gz --as-cran --run-donttest # this is before submission to CRAN #R CMD install fitHeavyTail_0.2.0.tar.gz #submit the tarball directly via the webform: https://cran.r-project.org/submit.html + + diff --git a/inst/CITATION b/inst/CITATION index 4674f56..2ab7277 100644 --- a/inst/CITATION +++ b/inst/CITATION @@ -1,6 +1,6 @@ citHeader("To cite 'fitHeavyTail' in publications, please use:") -bibentry(entry = "Manual", +bibentry(bibtype = "Manual", title = "{fitHeavyTail: Mean and Covariance Matrix Estimation under Heavy Tails}", author = c(as.person("D. P. Palomar"), as.person("R. Zhou"), @@ -17,7 +17,7 @@ bibentry(entry = "Manual", "https://CRAN.R-project.org/package=fitHeavyTail") ) -bibentry(entry = "Article", +bibentry(bibtype = "Article", title = "Regularized Tyler’s scatter estimator: Existence, uniqueness, and algorithms", author = c(as.person("Y. Sun"), as.person("P. Babu"), @@ -36,7 +36,7 @@ bibentry(entry = "Article", "https://doi.org/10.1109/TSP.2014.2348944") ) -bibentry(entry = "Article", +bibentry(bibtype = "Article", title = "Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions", author = c(as.person("Y. Sun"), as.person("P. Babu"), @@ -55,7 +55,7 @@ bibentry(entry = "Article", "https://doi.org/10.1109/TSP.2015.2417513") ) -bibentry(entry = "Article", +bibentry(bibtype = "Article", title = "Shrinking the Eigenvalues of M-estimators of Covariance Matrix", author = c(as.person("E. Ollila"), as.person("D. P. Palomar"), diff --git a/vignettes/CovarianceEstimationHeavyTail.Rmd b/vignettes/CovarianceEstimationHeavyTail.Rmd index 4c23ca5..53d258f 100644 --- a/vignettes/CovarianceEstimationHeavyTail.Rmd +++ b/vignettes/CovarianceEstimationHeavyTail.Rmd @@ -124,7 +124,7 @@ sum((fitted_3factors$cov - Sigma_cov)^2) To get a visual idea of the robustness, we can plot the shapes of the covariance matrices (true and estimated ones) on two dimensions. Observe how the heavy-tailed estimation follows the true one more closely than the sample covariance matrix: -```{r scatter-plots, echo=FALSE, fig.width=10, fig.height=6, out.width="100%"} +```{r scatter-plots, echo=FALSE, fig.width=10, fig.height=6, out.width="90%"} # fig.cap="Sample covariance matrix vs robust estimator." library(mvtnorm) library(ellipse)