-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathJsonToAvroExample.java
131 lines (117 loc) · 6.01 KB
/
JsonToAvroExample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
/*
* Copyright Confluent Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package io.confluent.examples.streams;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.ObjectMapper;
import io.confluent.examples.streams.avro.WikiFeed;
import io.confluent.kafka.serializers.AbstractKafkaSchemaSerDeConfig;
import io.confluent.kafka.streams.serdes.avro.SpecificAvroSerde;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.KStream;
import java.io.IOException;
import java.util.Properties;
/**
* A simple example demonstrating how to convert records in JSON format in a given topic to records
* serialized in Avro format.
* <p> Note: The specific Avro binding is used for serialization/deserialization, where the {@code
* WikiFeed} class is auto-generated from its Avro schema by the maven avro plugin. See {@code
* wikifeed.avsc} under {@code src/main/resources/avro/io/confluent/examples/streams/}. <p> <br> HOW
* TO RUN THIS EXAMPLE <p> 1) Start Zookeeper, Kafka, and Confluent Schema Registry. Please refer
* to
* <a href='http://docs.confluent.io/current/quickstart.html#quickstart'>QuickStart</a>. <p> 2)
* Create the input/intermediate/output topics used by this example.
* <pre>
* {@code
* $ bin/kafka-topics --create --topic json-source \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* $ bin/kafka-topics --create --topic avro-sink \
* --zookeeper localhost:2181 --partitions 1 --replication-factor 1
* }</pre>
* Note: The above commands are for the Confluent Platform. For Apache Kafka it should be {@code
* bin/kafka-topics.sh ...}.
* <p>
* 3) Start this example application either in your IDE or on the command line.
* <p>
* If via the command line please refer to <a href='https://github.com/confluentinc/kafka-streams-examples#packaging-and-running'>Packaging</a>.
* Once packaged you can then run:
* <pre>
* {@code
* $ java -cp target/kafka-streams-examples-8.0.0-0-standalone.jar io.confluent.examples.streams.JsonToAvroExample
* }
* </pre>
* 4) Write some input data to the source topics (e.g. via {@link JsonToAvroExampleDriver}). The
* already running example application (step 3) will automatically process this input data and write
* the results to the output topic. The {@link JsonToAvroExampleDriver} will print the results from
* the output topic
* <pre>
* {@code
* # Here: Write input data using the example driver. Once the driver has stopped generating data,
* # you can terminate it via Ctrl-C.
* $ java -cp target/kafka-streams-examples-8.0.0-0-standalone.jar io.confluent.examples.streams.JsonToAvroExampleDriver
* }
* </pre>
*/
public class JsonToAvroExample {
static final String JSON_SOURCE_TOPIC = "json-source";
static final String AVRO_SINK_TOPIC = "avro-sink";
public static void main(final String[] args) {
final String bootstrapServers = args.length > 0 ? args[0] : "localhost:9092";
final String schemaRegistryUrl = args.length > 1 ? args[1] : "http://localhost:8081";
final KafkaStreams streams = buildJsonToAvroStream(
bootstrapServers,
schemaRegistryUrl
);
streams.start();
// Add shutdown hook to respond to SIGTERM and gracefully close Kafka Streams
Runtime.getRuntime().addShutdownHook(new Thread(streams::close));
}
static KafkaStreams buildJsonToAvroStream(final String bootstrapServers,
final String schemaRegistryUrl) {
final Properties streamsConfiguration = new Properties();
streamsConfiguration.put(StreamsConfig.APPLICATION_ID_CONFIG, "json-to-avro-stream-conversion");
streamsConfiguration.put(StreamsConfig.CLIENT_ID_CONFIG, "json-to-avro-stream-conversion-client");
streamsConfiguration.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
// Where to find the Confluent schema registry instance(s)
streamsConfiguration.put(AbstractKafkaSchemaSerDeConfig.SCHEMA_REGISTRY_URL_CONFIG, schemaRegistryUrl);
streamsConfiguration.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, SpecificAvroSerde.class);
streamsConfiguration.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
streamsConfiguration.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
streamsConfiguration.put(StreamsConfig.COMMIT_INTERVAL_MS_CONFIG, 100 * 1000);
final ObjectMapper objectMapper = new ObjectMapper();
final StreamsBuilder builder = new StreamsBuilder();
// read the source stream
final KStream<String, String> jsonToAvroStream = builder.stream(JSON_SOURCE_TOPIC,
Consumed.with(Serdes.String(), Serdes.String()));
jsonToAvroStream.mapValues(v -> {
WikiFeed wikiFeed = null;
try {
final JsonNode jsonNode = objectMapper.readTree(v);
wikiFeed = new WikiFeed(jsonNode.get("user").asText(),
jsonNode.get("is_new").asBoolean(),
jsonNode.get("content").asText());
} catch (final IOException e) {
throw new RuntimeException(e);
}
return wikiFeed;
}).filter((k,v) -> v != null).to(AVRO_SINK_TOPIC);
return new KafkaStreams(builder.build(), streamsConfiguration);
}
}