-
Notifications
You must be signed in to change notification settings - Fork 29
/
genacl.c
720 lines (667 loc) · 19.6 KB
/
genacl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/*
* Copyright 2016 Chris Torek <[email protected]>
* All rights reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted providing that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/acl.h>
#include <sys/stat.h>
#include "lib9p.h"
#include "lib9p_impl.h"
#include "genacl.h"
#include "fid.h"
#include "log.h"
typedef int econvertfn(acl_entry_t, struct l9p_ace *);
#ifndef __APPLE__
static struct l9p_acl *l9p_new_acl(uint32_t acetype, uint32_t aceasize);
static struct l9p_acl *l9p_growacl(struct l9p_acl *acl, uint32_t aceasize);
static int l9p_count_aces(acl_t sysacl);
static struct l9p_acl *l9p_sysacl_to_acl(int, acl_t, econvertfn *);
#endif
static bool l9p_ingroup(gid_t tid, gid_t gid, gid_t *gids, size_t ngids);
static int l9p_check_aces(int32_t mask, struct l9p_acl *acl, struct stat *st,
uid_t uid, gid_t gid, gid_t *gids, size_t ngids);
void
l9p_acl_free(struct l9p_acl *acl)
{
free(acl);
}
/*
* Is the given group ID tid (test-id) any of the gid's in agids?
*/
static bool
l9p_ingroup(gid_t tid, gid_t gid, gid_t *gids, size_t ngids)
{
size_t i;
if (tid == gid)
return (true);
for (i = 0; i < ngids; i++)
if (tid == gids[i])
return (true);
return (false);
}
/* #define ACE_DEBUG */
/*
* Note that NFSv4 tests are done on a "first match" basis.
* That is, we check each ACE sequentially until we run out
* of ACEs, or find something explicitly denied (DENIED!),
* or have cleared out all our attempt-something bits. Once
* we come across an ALLOW entry for the bits we're trying,
* we clear those from the bits we're still looking for, in
* the order they appear.
*
* The result is either "definitely allowed" (we cleared
* all the bits), "definitely denied" (we hit a deny with
* some or all of the bits), or "unspecified". We
* represent these three states as +1 (positive = yes = allow),
* -1 (negative = no = denied), or 0 (no strong answer).
*
* For our caller's convenience, if we are called with a
* mask of 0, we return 0 (no answer).
*/
static int
l9p_check_aces(int32_t mask, struct l9p_acl *acl, struct stat *st,
uid_t uid, gid_t gid, gid_t *gids, size_t ngids)
{
uint32_t i;
struct l9p_ace *ace;
#ifdef ACE_DEBUG
const char *acetype, *allowdeny;
bool show_tid;
#endif
bool match;
uid_t tid;
if (mask == 0)
return (0);
for (i = 0; mask != 0 && i < acl->acl_nace; i++) {
ace = &acl->acl_aces[i];
switch (ace->ace_type) {
case L9P_ACET_ACCESS_ALLOWED:
case L9P_ACET_ACCESS_DENIED:
break;
default:
/* audit, alarm - ignore */
continue;
}
#ifdef ACE_DEBUG
show_tid = false;
#endif
if (ace->ace_flags & L9P_ACEF_OWNER) {
#ifdef ACE_DEBUG
acetype = "OWNER@";
#endif
match = st->st_uid == uid;
} else if (ace->ace_flags & L9P_ACEF_GROUP) {
#ifdef ACE_DEBUG
acetype = "GROUP@";
#endif
match = l9p_ingroup(st->st_gid, gid, gids, ngids);
} else if (ace->ace_flags & L9P_ACEF_EVERYONE) {
#ifdef ACE_DEBUG
acetype = "EVERYONE@";
#endif
match = true;
} else {
if (ace->ace_idsize != sizeof(tid))
continue;
#ifdef ACE_DEBUG
show_tid = true;
#endif
memcpy(&tid, &ace->ace_idbytes, sizeof(tid));
if (ace->ace_flags & L9P_ACEF_IDENTIFIER_GROUP) {
#ifdef ACE_DEBUG
acetype = "group";
#endif
match = l9p_ingroup(tid, gid, gids, ngids);
} else {
#ifdef ACE_DEBUG
acetype = "user";
#endif
match = tid == uid;
}
}
/*
* If this ACE applies to us, check remaining bits.
* If any of those bits also apply, check the type:
* DENY means "stop now", ALLOW means allow these bits
* and keep checking.
*/
#ifdef ACE_DEBUG
allowdeny = ace->ace_type == L9P_ACET_ACCESS_DENIED ?
"deny" : "allow";
#endif
if (match && (ace->ace_mask & (uint32_t)mask) != 0) {
#ifdef ACE_DEBUG
if (show_tid)
L9P_LOG(L9P_DEBUG,
"ACE: %s %s %d: mask 0x%x ace_mask 0x%x",
allowdeny, acetype, (int)tid,
(u_int)mask, (u_int)ace->ace_mask);
else
L9P_LOG(L9P_DEBUG,
"ACE: %s %s: mask 0x%x ace_mask 0x%x",
allowdeny, acetype,
(u_int)mask, (u_int)ace->ace_mask);
#endif
if (ace->ace_type == L9P_ACET_ACCESS_DENIED)
return (-1);
mask &= ~ace->ace_mask;
#ifdef ACE_DEBUG
L9P_LOG(L9P_DEBUG, "clear 0x%x: now mask=0x%x",
(u_int)ace->ace_mask, (u_int)mask);
#endif
} else {
#ifdef ACE_DEBUG
if (show_tid)
L9P_LOG(L9P_DEBUG,
"ACE: SKIP %s %s %d: "
"match %d mask 0x%x ace_mask 0x%x",
allowdeny, acetype, (int)tid,
(int)match, (u_int)mask,
(u_int)ace->ace_mask);
else
L9P_LOG(L9P_DEBUG,
"ACE: SKIP %s %s: "
"match %d mask 0x%x ace_mask 0x%x",
allowdeny, acetype,
(int)match, (u_int)mask,
(u_int)ace->ace_mask);
#endif
}
}
/* Return 1 if access definitely granted. */
#ifdef ACE_DEBUG
L9P_LOG(L9P_DEBUG, "ACE: end of ACEs, mask now 0x%x: %s",
mask, mask ? "no-definitive-answer" : "ALLOW");
#endif
return (mask == 0 ? 1 : 0);
}
/*
* Test against ACLs.
*
* The return value is normally 0 (access allowed) or EPERM
* (access denied), so it could just be a boolean....
*
* For "make new dir in dir" and "remove dir in dir", you must
* set the mask to test the directory permissions (not ADD_FILE but
* ADD_SUBDIRECTORY, and DELETE_CHILD). For "make new file in dir"
* you must set the opmask to test file ADD_FILE.
*
* The L9P_ACE_DELETE flag means "can delete this thing"; it's not
* clear whether it should override the parent directory's ACL if
* any. In our case it does not, but a caller may try
* L9P_ACE_DELETE_CHILD (separately, on its own) and then a
* (second, separate) L9P_ACE_DELETE, to make the permissions work
* as "or" instead of "and".
*
* Pass a NULL parent/pstat if they are not applicable, e.g.,
* for doing operations on an existing file, such as reading or
* writing data or attributes. Pass in a null child/cstat if
* that's not applicable, such as creating a new file/dir.
*
* NB: it's probably wise to allow the owner of any file to update
* the ACLs of that file, but we leave that test to the caller.
*/
int l9p_acl_check_access(int32_t opmask, struct l9p_acl_check_args *args)
{
struct l9p_acl *parent, *child;
struct stat *pstat, *cstat;
int32_t pop, cop;
size_t ngids;
uid_t uid;
gid_t gid, *gids;
int panswer, canswer;
assert(opmask != 0);
parent = args->aca_parent;
pstat = args->aca_pstat;
child = args->aca_child;
cstat = args->aca_cstat;
uid = args->aca_uid;
gid = args->aca_gid;
gids = args->aca_groups;
ngids = args->aca_ngroups;
#ifdef ACE_DEBUG
L9P_LOG(L9P_DEBUG,
"l9p_acl_check_access: opmask=0x%x uid=%ld gid=%ld ngids=%zd",
(u_int)opmask, (long)uid, (long)gid, ngids);
#endif
/*
* If caller said "superuser semantics", check that first.
* Note that we apply them regardless of ACLs.
*/
if (uid == 0 && args->aca_superuser)
return (0);
/*
* If told to ignore ACLs and use only stat-based permissions,
* discard any non-NULL ACL pointers.
*
* This will need some fancying up when we support POSIX ACLs.
*/
if ((args->aca_aclmode & L9P_ACM_NFS_ACL) == 0)
parent = child = NULL;
assert(parent == NULL || parent->acl_acetype == L9P_ACLTYPE_NFSv4);
assert(parent == NULL || pstat != NULL);
assert(child == NULL || child->acl_acetype == L9P_ACLTYPE_NFSv4);
assert(child == NULL || cstat != NULL);
assert(pstat != NULL || cstat != NULL);
/*
* If the operation is UNLINK we should have either both ACLs
* or no ACLs, but we won't require that here.
*
* If a parent ACL is supplied, it's a directory by definition.
* Make sure we're allowed to do this there, whatever this is.
* If a child ACL is supplied, check it too. Note that the
* DELETE permission only applies in the child though, not
* in the parent, and the DELETE_CHILD only applies in the
* parent.
*/
pop = cop = opmask;
if (parent != NULL || pstat != NULL) {
/*
* Remove child-only bits from parent op and
* parent-only bits from child op.
*
* L9P_ACE_DELETE is child-only.
*
* L9P_ACE_DELETE_CHILD is parent-only, and three data
* access bits overlap with three directory access bits.
* We should have child==NULL && cstat==NULL, so the
* three data bits should be redundant, but it's
* both trivial and safest to remove them anyway.
*/
pop &= ~L9P_ACE_DELETE;
cop &= ~(L9P_ACE_DELETE_CHILD | L9P_ACE_LIST_DIRECTORY |
L9P_ACE_ADD_FILE | L9P_ACE_ADD_SUBDIRECTORY);
} else {
/*
* Remove child-only bits from parent op. We need
* not bother since we just found we have no parent
* and no pstat, and hence won't actually *use* pop.
*
* pop &= ~(L9P_ACE_READ_DATA | L9P_ACE_WRITE_DATA |
* L9P_ACE_APPEND_DATA);
*/
}
panswer = 0;
canswer = 0;
if (parent != NULL)
panswer = l9p_check_aces(pop, parent, pstat,
uid, gid, gids, ngids);
if (child != NULL)
canswer = l9p_check_aces(cop, child, cstat,
uid, gid, gids, ngids);
if (panswer || canswer) {
/*
* Got a definitive answer from parent and/or
* child ACLs. We're not quite done yet though.
*/
if (opmask == L9P_ACOP_UNLINK) {
/*
* For UNLINK, we can get an allow from child
* and deny from parent, or vice versa. It's
* not 100% clear how to handle the two-answer
* case. ZFS says that if either says "allow",
* we allow, and if both definitely say "deny",
* we deny. This makes sense, so we do that
* here for all cases, even "strict".
*/
if (panswer > 0 || canswer > 0)
return (0);
if (panswer < 0 && canswer < 0)
return (EPERM);
/* non-definitive answer from one! move on */
} else {
/*
* Have at least one definitive answer, and
* should have only one; obey whichever
* one it is.
*/
if (panswer)
return (panswer < 0 ? EPERM : 0);
return (canswer < 0 ? EPERM : 0);
}
}
/*
* No definitive answer from ACLs alone. Check for ZFS style
* permissions checking and an "UNLINK" operation under ACLs.
* If so, find write-and-execute permission on parent.
* Note that WRITE overlaps with ADD_FILE -- that's ZFS's
* way of saying "allow write to dir" -- but EXECUTE is
* separate from LIST_DIRECTORY, so that's at least a little
* bit cleaner.
*
* Note also that only a definitive yes (both bits are
* explicitly allowed) results in granting unlink, and
* a definitive no (at least one bit explicitly denied)
* results in EPERM. Only "no answer" moves on.
*/
if ((args->aca_aclmode & L9P_ACM_ZFS_ACL) &&
opmask == L9P_ACOP_UNLINK && parent != NULL) {
panswer = l9p_check_aces(L9P_ACE_ADD_FILE | L9P_ACE_EXECUTE,
parent, pstat, uid, gid, gids, ngids);
if (panswer)
return (panswer < 0 ? EPERM : 0);
}
/*
* No definitive answer from ACLs.
*
* Try POSIX style rwx permissions if allowed. This should
* be rare, occurring mainly when caller supplied no ACLs
* or set the mode to suppress them.
*
* The stat to check is the parent's if we don't have a child
* (i.e., this is a dir op), or if the DELETE_CHILD bit is set
* (i.e., this is an unlink or similar). Otherwise it's the
* child's.
*/
if (args->aca_aclmode & L9P_ACM_STAT_MODE) {
struct stat *st;
int rwx, bits;
rwx = l9p_ace_mask_to_rwx(opmask);
if ((st = cstat) == NULL || (opmask & L9P_ACE_DELETE_CHILD))
st = pstat;
if (uid == st->st_uid)
bits = (st->st_mode >> 6) & 7;
else if (l9p_ingroup(st->st_gid, gid, gids, ngids))
bits = (st->st_mode >> 3) & 7;
else
bits = st->st_mode & 7;
/*
* If all the desired bits are set, we're OK.
*/
if ((rwx & bits) == rwx)
return (0);
}
/* all methods have failed, return EPERM */
return (EPERM);
}
/*
* Collapse fancy ACL operation mask down to simple Unix bits.
*
* Directory operations don't map that well. However, listing
* a directory really does require read permission, and adding
* or deleting files really does require write permission, so
* this is probably sufficient.
*/
int
l9p_ace_mask_to_rwx(int32_t opmask)
{
int rwx = 0;
if (opmask &
(L9P_ACE_READ_DATA | L9P_ACE_READ_NAMED_ATTRS |
L9P_ACE_READ_ATTRIBUTES | L9P_ACE_READ_ACL))
rwx |= 4;
if (opmask &
(L9P_ACE_WRITE_DATA | L9P_ACE_APPEND_DATA |
L9P_ACE_ADD_FILE | L9P_ACE_ADD_SUBDIRECTORY |
L9P_ACE_DELETE | L9P_ACE_DELETE_CHILD |
L9P_ACE_WRITE_NAMED_ATTRS | L9P_ACE_WRITE_ATTRIBUTES |
L9P_ACE_WRITE_ACL))
rwx |= 2;
if (opmask & L9P_ACE_EXECUTE)
rwx |= 1;
return (rwx);
}
#ifndef __APPLE__
/*
* Allocate new ACL holder and ACEs.
*/
static struct l9p_acl *
l9p_new_acl(uint32_t acetype, uint32_t aceasize)
{
struct l9p_acl *ret;
size_t asize, size;
asize = aceasize * sizeof(struct l9p_ace);
size = sizeof(struct l9p_acl) + asize;
ret = malloc(size);
if (ret != NULL) {
ret->acl_acetype = acetype;
ret->acl_nace = 0;
ret->acl_aceasize = aceasize;
}
return (ret);
}
/*
* Expand ACL to accomodate more entries.
*
* Currently won't shrink, only grow, so it's a fast no-op until
* we hit the allocated size. After that, it's best to grow in
* big chunks, or this will be O(n**2).
*/
static struct l9p_acl *
l9p_growacl(struct l9p_acl *acl, uint32_t aceasize)
{
struct l9p_acl *tmp;
size_t asize, size;
if (acl->acl_aceasize < aceasize) {
asize = aceasize * sizeof(struct l9p_ace);
size = sizeof(struct l9p_acl) + asize;
tmp = realloc(acl, size);
if (tmp == NULL)
free(acl);
acl = tmp;
}
return (acl);
}
/*
* Annoyingly, there's no POSIX-standard way to count the number
* of ACEs in a system ACL other than to walk through them all.
* This is silly, but at least 2n is still O(n), and the walk is
* short. (If the system ACL mysteriously grows, we'll handle
* that OK via growacl(), too.)
*/
static int
l9p_count_aces(acl_t sysacl)
{
acl_entry_t entry;
uint32_t n;
int id;
id = ACL_FIRST_ENTRY;
for (n = 0; acl_get_entry(sysacl, id, &entry) == 1; n++)
id = ACL_NEXT_ENTRY;
return ((int)n);
}
/*
* Create ACL with ACEs from the given acl_t. We use the given
* convert function on each ACE.
*/
static struct l9p_acl *
l9p_sysacl_to_acl(int acetype, acl_t sysacl, econvertfn *convert)
{
struct l9p_acl *acl;
acl_entry_t entry;
uint32_t n;
int error, id;
acl = l9p_new_acl((uint32_t)acetype, (uint32_t)l9p_count_aces(sysacl));
if (acl == NULL)
return (NULL);
id = ACL_FIRST_ENTRY;
for (n = 0;;) {
if (acl_get_entry(sysacl, id, &entry) != 1)
break;
acl = l9p_growacl(acl, n + 1);
if (acl == NULL)
return (NULL);
error = (*convert)(entry, &acl->acl_aces[n]);
id = ACL_NEXT_ENTRY;
if (error == 0)
n++;
}
acl->acl_nace = n;
return (acl);
}
#endif
#if defined(HAVE_POSIX_ACLS) && 0 /* not yet */
struct l9p_acl *
l9p_posix_acl_to_acl(acl_t sysacl)
{
}
#endif
#if defined(HAVE_FREEBSD_ACLS)
static int
l9p_frombsdnfs4(acl_entry_t sysace, struct l9p_ace *ace)
{
acl_tag_t tag; /* e.g., USER_OBJ, GROUP, etc */
acl_entry_type_t entry_type; /* e.g., allow/deny */
acl_permset_t absdperm;
acl_flagset_t absdflag;
acl_perm_t bsdperm; /* e.g., READ_DATA */
acl_flag_t bsdflag; /* e.g., FILE_INHERIT_ACE */
uint32_t flags, mask;
int error;
uid_t uid, *aid;
error = acl_get_tag_type(sysace, &tag);
if (error == 0)
error = acl_get_entry_type_np(sysace, &entry_type);
if (error == 0)
error = acl_get_flagset_np(sysace, &absdflag);
if (error == 0)
error = acl_get_permset(sysace, &absdperm);
if (error)
return (error);
flags = 0;
uid = 0;
aid = NULL;
/* move user/group/everyone + id-is-group-id into flags */
switch (tag) {
case ACL_USER_OBJ:
flags |= L9P_ACEF_OWNER;
break;
case ACL_GROUP_OBJ:
flags |= L9P_ACEF_GROUP;
break;
case ACL_EVERYONE:
flags |= L9P_ACEF_EVERYONE;
break;
case ACL_GROUP:
flags |= L9P_ACEF_IDENTIFIER_GROUP;
/* FALLTHROUGH */
case ACL_USER:
aid = acl_get_qualifier(sysace); /* ugh, this malloc()s */
if (aid == NULL)
return (ENOMEM);
uid = *(uid_t *)aid;
free(aid);
aid = &uid;
break;
default:
return (EINVAL); /* can't happen */
}
switch (entry_type) {
case ACL_ENTRY_TYPE_ALLOW:
ace->ace_type = L9P_ACET_ACCESS_ALLOWED;
break;
case ACL_ENTRY_TYPE_DENY:
ace->ace_type = L9P_ACET_ACCESS_DENIED;
break;
case ACL_ENTRY_TYPE_AUDIT:
ace->ace_type = L9P_ACET_SYSTEM_AUDIT;
break;
case ACL_ENTRY_TYPE_ALARM:
ace->ace_type = L9P_ACET_SYSTEM_ALARM;
break;
default:
return (EINVAL); /* can't happen */
}
/* transform remaining BSD flags to internal NFS-y form */
bsdflag = *absdflag;
if (bsdflag & ACL_ENTRY_FILE_INHERIT)
flags |= L9P_ACEF_FILE_INHERIT_ACE;
if (bsdflag & ACL_ENTRY_DIRECTORY_INHERIT)
flags |= L9P_ACEF_DIRECTORY_INHERIT_ACE;
if (bsdflag & ACL_ENTRY_NO_PROPAGATE_INHERIT)
flags |= L9P_ACEF_NO_PROPAGATE_INHERIT_ACE;
if (bsdflag & ACL_ENTRY_INHERIT_ONLY)
flags |= L9P_ACEF_INHERIT_ONLY_ACE;
if (bsdflag & ACL_ENTRY_SUCCESSFUL_ACCESS)
flags |= L9P_ACEF_SUCCESSFUL_ACCESS_ACE_FLAG;
if (bsdflag & ACL_ENTRY_FAILED_ACCESS)
flags |= L9P_ACEF_FAILED_ACCESS_ACE_FLAG;
ace->ace_flags = flags;
/*
* Transform BSD permissions to ace_mask. Note that directory
* vs file bits are the same in both sets, so we don't need
* to worry about that, at least.
*
* There seem to be no BSD equivalents for WRITE_RETENTION
* and WRITE_RETENTION_HOLD.
*/
mask = 0;
bsdperm = *absdperm;
if (bsdperm & ACL_READ_DATA)
mask |= L9P_ACE_READ_DATA;
if (bsdperm & ACL_WRITE_DATA)
mask |= L9P_ACE_WRITE_DATA;
if (bsdperm & ACL_APPEND_DATA)
mask |= L9P_ACE_APPEND_DATA;
if (bsdperm & ACL_READ_NAMED_ATTRS)
mask |= L9P_ACE_READ_NAMED_ATTRS;
if (bsdperm & ACL_WRITE_NAMED_ATTRS)
mask |= L9P_ACE_WRITE_NAMED_ATTRS;
if (bsdperm & ACL_EXECUTE)
mask |= L9P_ACE_EXECUTE;
if (bsdperm & ACL_DELETE_CHILD)
mask |= L9P_ACE_DELETE_CHILD;
if (bsdperm & ACL_READ_ATTRIBUTES)
mask |= L9P_ACE_READ_ATTRIBUTES;
if (bsdperm & ACL_WRITE_ATTRIBUTES)
mask |= L9P_ACE_WRITE_ATTRIBUTES;
/* L9P_ACE_WRITE_RETENTION */
/* L9P_ACE_WRITE_RETENTION_HOLD */
/* 0x00800 */
if (bsdperm & ACL_DELETE)
mask |= L9P_ACE_DELETE;
if (bsdperm & ACL_READ_ACL)
mask |= L9P_ACE_READ_ACL;
if (bsdperm & ACL_WRITE_ACL)
mask |= L9P_ACE_WRITE_ACL;
if (bsdperm & ACL_WRITE_OWNER)
mask |= L9P_ACE_WRITE_OWNER;
if (bsdperm & ACL_SYNCHRONIZE)
mask |= L9P_ACE_SYNCHRONIZE;
ace->ace_mask = mask;
/* fill in variable-size user or group ID bytes */
if (aid == NULL)
ace->ace_idsize = 0;
else {
ace->ace_idsize = sizeof(uid);
memcpy(&ace->ace_idbytes[0], aid, sizeof(uid));
}
return (0);
}
struct l9p_acl *
l9p_freebsd_nfsv4acl_to_acl(acl_t sysacl)
{
return (l9p_sysacl_to_acl(L9P_ACLTYPE_NFSv4, sysacl, l9p_frombsdnfs4));
}
#endif
#if defined(HAVE_DARWIN_ACLS) && 0 /* not yet */
struct l9p_acl *
l9p_darwin_nfsv4acl_to_acl(acl_t sysacl)
{
}
#endif