Releases: compomics/ms2pip
Releases · compomics/ms2pip
v3.5.0
New since last release:
ProteinId
column added to Spectronaut CSV output- Major code refactoring
- Improved logging
- Improved exception handling
- Faster compilation
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
HCDch2 | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 (+) and 0.644162 (++) |
CIDch2 | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 (+) and 0.813342 (++) |
v3.4.2
New since last release:
- MS²PIP can now be downloaded and installed from PyPI using
pip install ms2pip
. MS²PIP on PyPI is already compiled, so it can be installed in seconds (without slow and memory inefficient compilation step). - MS²PIP will use all available CPUs by default.
- Speed improvements after multiprocessing step (especially for large numbers of predictions).
- Moved to semantic versioning
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
HCDch2 | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 (+) and 0.644162 (++) |
CIDch2 | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 (+) and 0.813342 (++) |
v20191029
New since last release:
- MS²PIP is now locally installable with pip and conda
- New: Spectronaut CSV and Bibliospec/Skyline output formats
- Output formats can now be specified in the config file (e.g. out=csv,msp,spectronaut)
- Slightly faster model compilation
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
HCDch2 | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 (+) and 0.644162 (++) |
CIDch2 | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 (+) and 0.813342 (++) |
v20190624
New since previous release:
- Add 'RetentionTimeMins' to MSP output, if ELUDE model file is given.
Includes precompiled files: ms2pip_c_v20190624_precompiled_cython_modules.zip
(See the Extended Install Instructions for more information)
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
HCDch2 | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 (+) and 0.644162 (++) |
CIDch2 | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 (+) and 0.813342 (++) |
v20190312
New since last release:
- Included models for charge 2 fragment ions (CID and HCD)
Includes precompiled files : ms2pip_c_v20190312_precompiled_cython_modules.zip
(See the Extended Install Instructions for more information)
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
HCDch2 | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 (+) and 0.644162 (++) |
CIDch2 | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 (+) and 0.813342 (++) |
v20190130
New since last release:
- Bugfixes
- Updated requirements.txt
- Includes precompiled files see the Extended Install Instructions for more information
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |
v20190120
First official GitHub release of the third iteration of MS2PIP, called MS2PIPc.
Includes the following models:
Model | Current version | Train-test dataset (unique peptides) | Evaluation dataset (unique peptides) | Median Pearson correlation on evaluation dataset |
---|---|---|---|---|
HCD | v20190107 | MassIVE-KB (1 623 712) | PXD008034 (35 269) | 0.903786 |
CID | v20190107 | NIST CID Human (340 356) | NIST CID Yeast (92 609) | 0.904947 |
iTRAQ | v20190107 | NIST iTRAQ (704 041) | PXD001189 (41 502) | 0.905870 |
iTRAQphospho | v20190107 | NIST iTRAQ phospho (183 383) | PXD001189 (9 088) | 0.843898 |
TMT | v20190107 | Peng Lab TMT Spectral Library (1 185 547) | PXD009495 (36 137) | 0.950460 |
TTOF5600 | v20190107 | PXD000954 (215 713) | PXD001587 (15 111) | 0.746823 |