-
Notifications
You must be signed in to change notification settings - Fork 85
/
defaults.cpp
328 lines (267 loc) · 12.3 KB
/
defaults.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// Copyright (C) 2002, International Business Machines
// Corporation and others. All Rights Reserved.
// This code is licensed under the terms of the Eclipse Public License (EPL).
#include "ClpSimplex.hpp"
#include "ClpPrimalColumnSteepest.hpp"
#include "ClpDualRowSteepest.hpp"
#include <iomanip>
int main(int argc, const char *argv[])
{
ClpSimplex model;
int status;
// Keep names
if (argc < 2) {
#if defined(SAMPLEDIR)
status = model.readMps(SAMPLEDIR "/p0033.mps", true);
#else
fprintf(stderr, "Do not know where to find sample MPS files.\n");
exit(1);
#endif
} else
status = model.readMps(argv[1], true);
/*
This driver is similar to minimum.cpp, but it
sets all parameter values to their defaults. The purpose of this
is to give a list of most of the methods that the end user will need.
There are also some more methods as for OsiSolverInterface e.g.
some loadProblem methods and deleteRows and deleteColumns.
Often two methods do the same thing, one having a name I like
while the other adheres to OsiSolverInterface standards
*/
// Use exact devex ( a variant of steepest edge)
ClpPrimalColumnSteepest primalSteepest;
model.setPrimalColumnPivotAlgorithm(primalSteepest);
int integerValue;
double value;
// Infeasibility cost
value = model.infeasibilityCost();
std::cout << "Default value of infeasibility cost is " << value << std::endl;
model.setInfeasibilityCost(value);
if (!status) {
model.primal();
}
// Number of rows and columns - also getNumRows, getNumCols
std::string modelName;
model.getStrParam(ClpProbName, modelName);
std::cout << "Model " << modelName << " has " << model.numberRows() << " rows and " <<
model.numberColumns() << " columns" << std::endl;
/* Some parameters as in OsiSolverParameters. ObjectiveLimits
are not active yet. dualTolerance, setDualTolerance,
primalTolerance and setPrimalTolerance may be used as well */
model.getDblParam(ClpDualObjectiveLimit, value);
std::cout << "Value of ClpDualObjectiveLimit is " << value << std::endl;
model.getDblParam(ClpPrimalObjectiveLimit, value);
std::cout << "Value of ClpPrimalObjectiveLimit is " << value << std::endl;
model.getDblParam(ClpDualTolerance, value);
std::cout << "Value of ClpDualTolerance is " << value << std::endl;
model.getDblParam(ClpPrimalTolerance, value);
std::cout << "Value of ClpPrimalTolerance is " << value << std::endl;
model.getDblParam(ClpObjOffset, value);
std::cout << "Value of ClpObjOffset is " << value << std::endl;
// setDblParam(ClpPrimalTolerance) is same as this
model.getDblParam(ClpPrimalTolerance, value);
model.setPrimalTolerance(value);
model.setDualTolerance(model.dualTolerance()) ;
// Other Param stuff
// Can also use maximumIterations
model.getIntParam(ClpMaxNumIteration, integerValue);
std::cout << "Value of ClpMaxNumIteration is " << integerValue << std::endl;
model.setMaximumIterations(integerValue);
// Not sure this works yet
model.getIntParam(ClpMaxNumIterationHotStart, integerValue);
std::cout << "Value of ClpMaxNumIterationHotStart is "
<< integerValue << std::endl;
// Can also use getIterationCount and getObjValue
/* Status of problem:
0 - optimal
1 - primal infeasible
2 - dual infeasible
3 - stopped on iterations etc
4 - stopped due to errors
*/
std::cout << "Model status is " << model.status() << " after "
<< model.numberIterations() << " iterations - objective is "
<< model.objectiveValue() << std::endl;
assert(!model.isAbandoned());
assert(model.isProvenOptimal());
assert(!model.isProvenPrimalInfeasible());
assert(!model.isProvenDualInfeasible());
assert(!model.isPrimalObjectiveLimitReached());
assert(!model.isDualObjectiveLimitReached());
assert(!model.isIterationLimitReached());
// Things to help you determine if optimal
assert(model.primalFeasible());
assert(!model.numberPrimalInfeasibilities());
assert(model.sumPrimalInfeasibilities() < 1.0e-7);
assert(model.dualFeasible());
assert(!model.numberDualInfeasibilities());
assert(model.sumDualInfeasibilities() < 1.0e-7);
// Save warm start and set to all slack
unsigned char * basis1 = model.statusCopy();
model.createStatus();
// Now create another model and do hot start
ClpSimplex model2 = model;
model2.copyinStatus(basis1);
delete [] basis1;
// Check model has not got basis (should iterate)
model.dual();
// Can use getObjSense
model2.setOptimizationDirection(model.optimizationDirection());
// Can use scalingFlag() to check if scaling on
// But set up scaling
model2.scaling();
// Could play with sparse factorization on/off
model2.setSparseFactorization(model.sparseFactorization());
// Sets row pivot choice algorithm in dual
ClpDualRowSteepest dualSteepest;
model2.setDualRowPivotAlgorithm(dualSteepest);
// Dual bound (i.e. dual infeasibility cost)
value = model.dualBound();
std::cout << "Default value of dual bound is " << value << std::endl;
model.setDualBound(value);
// Do some deafult message handling
// To see real use - see OsiOslSolverInterfaceTest.cpp
CoinMessageHandler handler;
model2.passInMessageHandler(& handler);
model2.newLanguage(CoinMessages::us_en);
//Increase level of detail
model2.setLogLevel(4);
// solve
model2.dual();
// flip direction twice and solve
model2.setOptimizationDirection(-1);
model2.dual();
model2.setOptimizationDirection(1);
//Decrease level of detail
model2.setLogLevel(1);
model2.dual();
/*
Now for getting at information. This will not deal with:
ClpMatrixBase * rowCopy() and ClpMatrixbase * clpMatrix()
nor with
double * infeasibilityRay() and double * unboundedRay()
(NULL returned if none/wrong)
Up to user to use delete [] on these arrays.
*/
/*
Now to print out solution. The methods used return modifiable
arrays while the alternative names return const pointers -
which is of course much more virtuous
*/
int numberRows = model2.numberRows();
// Alternatively getRowActivity()
double * rowPrimal = model2.primalRowSolution();
// Alternatively getRowPrice()
double * rowDual = model2.dualRowSolution();
// Alternatively getRowLower()
double * rowLower = model2.rowLower();
// Alternatively getRowUpper()
double * rowUpper = model2.rowUpper();
// Alternatively getRowObjCoefficients()
double * rowObjective = model2.rowObjective();
// If we have not kept names (parameter to readMps) this will be 0
assert(model2.lengthNames());
// Row names
const std::vector<std::string> * rowNames = model2.rowNames();
int iRow;
std::cout << " Primal Dual Lower Upper (Cost)"
<< std::endl;
for (iRow = 0; iRow < numberRows; iRow++) {
double value;
std::cout << std::setw(6) << iRow << " " << std::setw(8) << (*rowNames)[iRow];
value = rowPrimal[iRow];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = rowDual[iRow];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = rowLower[iRow];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = rowUpper[iRow];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
if (rowObjective) {
value = rowObjective[iRow];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
}
std::cout << std::endl;
}
std::cout << "--------------------------------------" << std::endl;
// Columns
int numberColumns = model2.numberColumns();
// Alternatively getColSolution()
double * columnPrimal = model2.primalColumnSolution();
// Alternatively getReducedCost()
double * columnDual = model2.dualColumnSolution();
// Alternatively getColLower()
double * columnLower = model2.columnLower();
// Alternatively getColUpper()
double * columnUpper = model2.columnUpper();
// Alternatively getObjCoefficients()
double * columnObjective = model2.objective();
// If we have not kept names (parameter to readMps) this will be 0
assert(model2.lengthNames());
// Column names
const std::vector<std::string> * columnNames = model2.columnNames();
int iColumn;
std::cout << " Primal Dual Lower Upper Cost"
<< std::endl;
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
double value;
std::cout << std::setw(6) << iColumn << " " << std::setw(8) << (*columnNames)[iColumn];
value = columnPrimal[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnDual[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnLower[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnUpper[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
value = columnObjective[iColumn];
if (fabs(value) < 1.0e5)
std::cout << std::setiosflags(std::ios::fixed | std::ios::showpoint) << std::setw(14) << value;
else
std::cout << std::setiosflags(std::ios::scientific) << std::setw(14) << value;
std::cout << std::endl;
}
std::cout << "--------------------------------------" << std::endl;
std::cout << std::resetiosflags(std::ios::fixed | std::ios::showpoint | std::ios::scientific);
// Now matrix
CoinPackedMatrix * matrix = model2.matrix();
const double * element = matrix->getElements();
const int * row = matrix->getIndices();
const CoinBigIndex * start = matrix->getVectorStarts();
const int * length = matrix->getVectorLengths();
for (iColumn = 0; iColumn < numberColumns; iColumn++) {
std::cout << "Column " << iColumn;
CoinBigIndex j;
for (j = start[iColumn]; j < start[iColumn] + length[iColumn]; j++)
std::cout << " ( " << row[j] << ", " << element[j] << ")";
std::cout << std::endl;
}
return 0;
}