forked from kdlong/HitsAndTracksPlotter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunDash.py
181 lines (166 loc) · 6.8 KB
/
runDash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Output, Input
import plotly.graph_objects as go
import uproot
from HitsAndTracksPlotter import HitsAndTracksPlotter
import os
import argparse
def parseArgs():
parser = argparse.ArgumentParser()
parsers = parser.add_subparsers(dest='mode')
interactive = parsers.add_parser("interactive", help="Launch and interactive dash session")
output = parsers.add_parser("output", help="Produce plots as output (not interactive)")
output.add_argument("-d", "--dataset", default="Gun50Part_CHEPDef_fineCalo_nano_default.root", type=str, help="Input file")
output.add_argument("-e", "--event", default=1, type=int, help="Event number to show")
output.add_argument("-o", "--outputFile", default="event_display", type=str, help="Output file")
output.add_argument("--outDir", default="plots/", type=str, help="Output plots directory")
return parser.parse_args()
hit_options_ = ["RecHitHGC", "SimHitMuonCSC", "SimHitPixelECLowTof", "SimHitPixelLowTof",
"SimHitHGCEE", "SimHitHGCHEF", "SimHitHGCHEB", ]
default_dataset_ = "Gun50Part_CHEPDef_fineCalo_nano_default.root"
dataset = default_dataset_
ntuple_path = os.path.expanduser("Ntuples/merging_thresholds/")
print("Set plotter")
globalplotter = HitsAndTracksPlotter(f"{ntuple_path}/{dataset}")
def draw_plots(hitTypes, detectors, colormode, pcolormode, particles, simclusters, event, nHitFilter, dataset):
if not dataset:
dataset = default_dataset_
if not event:
event = 0
# Merged by dR off for now
#plotter.setSimClusters(["SimCluster", "MergedSimCluster", "MergedByDRSimCluster"])
plotter = globalplotter
plotter.setSimClusters(["SimCluster", "MergedSimCluster", "MergedByDRSimCluster"])
plotter.setSimClusterHitFilter(nHitFilter if nHitFilter else 0)
plotter.setHits(hitTypes)
if event != plotter.getEvent() or dataset not in plotter.getDataset():
plotter.setEvent(event)
plotter.setDataset(f"{ntuple_path}/{dataset}")
plotter.setReload()
plotter.setDetectors(detectors)
plotter.setParticles(particles if particles != "None" else None)
globalplotter.loadDataNano()
data = plotter.drawAllObjects(colormode, pcolormode, simclusters)
return {
# For now never reset the camera
'layout' : plotter.makeLayout('alwaystrue'),
'data' : data,
}
app = dash.Dash(__name__)
app.layout = html.Div([
dcc.Graph(id="scatter-plot", style={'width': '90%', 'height': '60%'}),
dcc.Input(
id="event", type="number", placeholder="event",
min=0, max=17, step=1,
),
html.Br(),
html.Label('Data set'),
dcc.Dropdown(
id='dataset',
options=[
{'label': "50 particle gun (fineCalo)", 'value': "Gun50Part_CHEPDef_fineCalo_treeMerger_nano.root"},
{'label' : '50 particle gun (fineCalo=Off)', 'value' : "Gun50Part_CHEPDef_fineCalo_treeMerger_nano.root"},
{'label' : 'TTbar (fineCalo)', 'value' : "TTbar_fineCalo_nano.root"},
{'label': 'Merging (fineCalo) Default','value':"Gun50Part_CHEPDef_fineCalo_nano_default.root"}
],
value=default_dataset_
),
html.Br(),
html.Label('Hit types'),
dcc.Checklist(
id='hitTypes',
options=[{'label': i, 'value': i} for i in hit_options_
],
value=hit_options_[:1],
),
html.Label('Draw detector'),
dcc.Checklist(
id='detectorElements',
options=[{'label': i, 'value': i} for i in
["Tracker", "CSC front", "HGCAL front"]],
value=[],
),
html.Label('Particle trajectories'),
dcc.Dropdown(
id='particles',
options=[{'label': i, 'value': i} for i in
["GenPart", "TrackingPart", "PFCand", "CaloPart", "None"]],
value="CaloPart"
),
html.Label('Hit color mode'),
dcc.Dropdown(
id='colormode',
options=[{'label': i, 'value': i} for i in ["MergedSimClusterIdx", "MergedByDRSimClusterIdx",
"SimClusterIdx", "CaloPartIdx", "pdgId", "PFCandIdx", "PFTICLCandIdx"]],
value='CaloPartIdx'
),
html.Label('Particle color mode'),
dcc.Dropdown(
id='pcolormode',
options=[{'label': i, 'value': i} for i in ["Index", "pdgId",]],
value='Index'
),
html.Label('Show SimClusters'),
dcc.Dropdown(
id='simclusters',
options=[{'label': "Default", 'value': "SimCluster"},
{'label' : "Merged", "value" : "MergedSimCluster"},
{'label' : "MergedByDR", "value" : "MergedByDRSimCluster"},
{'label' : "None", "value" : "None"}],
value="None"
),
html.Br(),
html.Label('Filter SimClusters by nHits'),
html.Br(),
dcc.Input(
id="nHitFilter", type="number", placeholder="minHits",
min=0, max=20, step=1,
),
html.Br(),
],
style={
"width": "100%",
"height": "1800px",
"display": "inline-block",
"padding-top": "5px",
"padding-left": "1px",
"overflow": "hidden"
}
)
@app.callback(
Output("scatter-plot", "figure"),
[Input("hitTypes", "value")],
[Input("detectorElements", "value")],
[Input("colormode", "value")],
[Input("pcolormode", "value")],
[Input("particles", "value")],
[Input("simclusters", "value")],
[Input("event", "value")],
[Input("nHitFilter", "value")],
[Input("dataset", "value")],
)
def draw_figure(hitTypes, detectors, colormode, pcolormode, particles, simclusters, event, nHitFilter, dataset):
return draw_plots(hitTypes, detectors, colormode, pcolormode, particles, simclusters, event, nHitFilter, dataset)
if __name__ == '__main__':
args = parseArgs()
if args.mode == "interactive":
app.run_server(debug=True, port=3389, host='0.0.0.0')
elif args.mode == 'output':
static_plot_opts = {'hitTypes':['RecHitHGC'],
'detectors':[],
'colormode':'CaloPartIdx',
'pcolormode':'index',
'particles':'CaloPart',
'simclusters':'MergedSimCluster',
'event':args.event,
'nHitFilter':20,
'dataset':args.dataset}
fig = go.Figure(draw_plots(static_plot_opts['hitTypes'], static_plot_opts['detectors'], static_plot_opts['colormode'], static_plot_opts['pcolormode'], static_plot_opts['particles'], static_plot_opts['simclusters'], static_plot_opts['event'], static_plot_opts['nHitFilter'], static_plot_opts['dataset']))
if not os.path.exists(args.outDir):
os.makedirs(args.outDir)
outputFileName = args.outDir+'/' + args.outputFile+'_event_'+str(args.event)+'.html'
fig.write_html(outputFileName)
else:
raise ValueError("Must select mode 'interactive' or 'output'")