This document has advanced instructions for running RFCN Int8
inference, which provides more control over the individual parameters that
are used. For more information on using /benchmarks/launch_benchmark.py
,
see the launch benchmark documentation.
Prior to using these instructions, please follow the setup instructions from
the model's README and/or the
AI Kit documentation to get your environment
setup (if running on bare metal) and download the dataset, pretrained model, etc.
If you are using AI Kit, please exclude the --docker-image
flag from the
commands below, since you will be running the the TensorFlow conda environment
instead of docker.
Any of the launch_benchmark.py
commands below can be run on bare metal by
removing the --docker-image
arg. Ensure that you have all of the
required prerequisites installed in your environment
before running without the docker container.
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.
Once your environment is setup, navigate to the benchmarks
directory of
the model zoo and set environment variables pointing to the directory for the
dataset, pretrained model frozen graph, the TensorFlow models repo, and an output
directory where log files will be written.
# cd to the benchmarks directory in the model zoo
cd benchmarks
export DATASET_DIR=<path to the dataset (raw images for inference or the TF records file for accuracy)>
export PRETRAINED_MODEL=<path to the pretrained model frozen graph file>
export TF_MODELS_DIR=<path to your clone of the TensorFlow models repo>
export OUTPUT_DIR=<directory where log files will be saved>
The command below runs batch and online inference. Note that the
--data-location ${DATASET_DIR}
should point to the raw COCO dataset images
(for example DATASET_DIR=/home/<user>/coco_dataset/val2017
).
python launch_benchmark.py \
--model-name rfcn \
--mode inference \
--precision int8 \
--framework tensorflow \
--docker-image intel/intel-optimized-tensorflow:latest \
--model-source-dir ${TF_MODELS_DIR} \
--data-location ${DATASET_DIR} \
--in-graph ${PRETRAINED_MODEL} \
--benchmark-only \
--output-dir ${OUTPUT_DIR} \
-- number_of_steps=500
Or for accuracy testing, use the command below and set the --data-location ${DATASET_DIR}
to the path the TF record file (for example DATASET_DIR=/home/<user>/coco_output/coco_val.record
).
python launch_benchmark.py \
--model-name rfcn \
--mode inference \
--precision int8 \
--framework tensorflow \
--docker-image intel/intel-optimized-tensorflow:latest \
--model-source-dir ${TF_MODELS_DIR} \
--data-location ${DATASET_DIR} \
--in-graph ${PRETRAINED_MODEL} \
--accuracy-only \
--output-dir ${OUTPUT_DIR} \
-- split="accuracy_message"
Note that the --verbose
flag can be added to any of the above commands
to get additional debug output.
Log files are located at the ${OUTPUT_DIR}
path.
Below is a sample log file tail when running for batch and online inference:
Step 0: ... seconds
Step 10: ... seconds
...
Step 460: ... seconds
Step 470: ... seconds
Step 480: ... seconds
Step 490: ... seconds
Avg. Duration per Step: ...
...
Ran inference with batch size -1
Log location outside container: ${OUTPUT_DIR}/benchmark_rfcn_inference_int8_20190416_182445.log
And here is a sample log file tail when running for accuracy:
...
Accumulating evaluation results...
DONE (t=1.91s).
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.327
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.506
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.365
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.327
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.271
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.376
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.380
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.380
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Ran inference with batch size -1
Log location outside container: ${OUTPUT_DIR}/benchmark_rfcn_inference_int8_20190227_194752.log