-
Notifications
You must be signed in to change notification settings - Fork 7
/
train_AR-Net-WL.py
471 lines (405 loc) · 21.1 KB
/
train_AR-Net-WL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""
Autoregressive Convolutional Encoder-Decoder Networks for Image-to-Image Regression
"""
from dense_ed import DenseED
import torch as th
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau, StepLR, MultiStepLR
import h5py
import os
import sys
import argparse
import json
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.ticker as ticker
from time import time
import pandas as pd
from scipy import stats, integrate
import seaborn as sns
plt.switch_backend('agg')
# default to use cuda
parser = argparse.ArgumentParser(description='Dnense Encoder-Decoder Convolutional Network')
parser.add_argument('--exp-name', type=str, default='AR-Net-WL', help='experiment name')
parser.add_argument('--blocks', type=list, default=(5, 10, 5), help='list of number of layers in each block in decoding net')
parser.add_argument('--growth-rate', type=int, default=40, help='output of each conv')
parser.add_argument('--drop-rate', type=float, default=0, help='dropout rate')
parser.add_argument('--bn-size', type=int, default=8, help='bottleneck size: bn_size * growth_rate')
parser.add_argument('--bottleneck', action='store_true', default=False, help='enable bottleneck in the dense blocks')
parser.add_argument('--init-features', type=int, default=48, help='# initial features after the first conv layer')
parser.add_argument('--data-dir', type=str, default="/afs/crc.nd.edu/user/s/smo/invers_mt3d/DCEDN_sequence_2out/", help='data directory')
parser.add_argument('--kle-terms', type=int, default=679, help='num of KLE terms')
parser.add_argument('--n-train', type=int, default=400, help="number of training data")
parser.add_argument('--n-test', type=int, default=500, help="number of test data")
parser.add_argument('--w-c', type=float, default=5.0, help='weight value in the weighted loss')
parser.add_argument('--n-epochs', type=int, default=200, help='number of epochs to train (default: 200)')
parser.add_argument('--lr', type=float, default=0.005, help='learnign rate')
parser.add_argument('--weight-decay', type=float, default=5e-5, help="weight decay")
parser.add_argument('--batch-size', type=int, default=200, help='input batch size for training (default: 100)')
parser.add_argument('--test-batch-size', type=int, default=50, help='input batch size for testing (default: 100)')
parser.add_argument('--log-interval', type=int, default=5, help='how many epochs to wait before logging training status')
parser.add_argument('--plot-interval', type=int, default=50, help='how many epochs to wait before plotting training status')
args = parser.parse_args()
device = th.device("cuda" if th.cuda.is_available() else "cpu")
print('------------ Arguments -------------')
for k, v in sorted(vars(args).items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
all_over_again = 'experiments/April_16_test'
exp_dir = args.data_dir + all_over_again + "/{}/kle_{}/Ntrs{}__Bks{}_Bts{}_Eps{}_wd{}_lr{}_K{}_w_c{}".\
format(args.exp_name, args.kle_terms, args.n_train,args.blocks,
args.batch_size, args.n_epochs, args.weight_decay, args.lr, args.growth_rate,args.w_c)
output_dir = exp_dir + "/predictions"
model_dir = exp_dir
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
ntimes = 7 # ntimes is the total number of time instances considered
Nt = 5 # Nt is the number of time instances with non-zero source rate
# load training data
# N x Nc x H x W, N: Number of samples, Nc: Number of input/output channels, H x W: image size
hdf5_dir = "/afs/crc.nd.edu/user/s/smo/invers_mt3d/raw2/lsx4_lsy2_var0.5_smax8_D1r0.1/kle{}_lhs{}".format(args.kle_terms,args.n_train)
with h5py.File(hdf5_dir + "/input_lhs{}_2out.hdf5".format(args.n_train), 'r') as f:
x_train = f['dataset'][()]
print("total input data shape: {}".format(x_train.shape))
with h5py.File(hdf5_dir + "/output_lhs{}_2out.hdf5".format(args.n_train), 'r') as f:
y_train = f['dataset'][()]
print("total output data shape: {}".format(y_train.shape))
# load test data
hdf5_dir = "/afs/crc.nd.edu/user/s/smo/invers_mt3d/raw2/lsx4_lsy2_var0.5_smax8_D1r0.1/kle{}_lhs{}".format(args.kle_terms,args.n_test)
with h5py.File(hdf5_dir + "/input_lhs{}_2out.hdf5".format(args.n_test), 'r') as f:
x_test = f['dataset'][()]
print("test input data shape: {}".format(x_test.shape))
with h5py.File(hdf5_dir + "/output_lhs{}_2out.hdf5".format(args.n_test), 'r') as f:
y_test = f['dataset'][()]
print("output data shape: {}".format(y_test.shape))
y_train_mean = np.mean(y_train, 0)
y_train_var = np.sum((y_train - y_train_mean) ** 2)
print('y_train_var: {}'.format(y_train_var))
train_stats = {}
train_stats['y_mean'] = y_train_mean
train_stats['y_var'] = y_train_var
y_test_mean = np.mean(y_test, 0)
y_test_var = np.sum((y_test - y_test_mean) ** 2)
print('y_test_var: {}'.format(y_test_var))
test_stats = {}
test_stats['y_mean'] = y_test_mean
test_stats['y_var'] = y_test_var
kwargs = {'num_workers': 4,
'pin_memory': True} if th.cuda.is_available() else {}
data_train = th.utils.data.TensorDataset(th.FloatTensor(x_train),
th.FloatTensor(y_train))
data_test = th.utils.data.TensorDataset(th.FloatTensor(x_test),
th.FloatTensor(y_test))
train_loader = th.utils.data.DataLoader(data_train,
batch_size=args.batch_size,
shuffle=True, **kwargs)
test_loader = th.utils.data.DataLoader(data_test,
batch_size=args.test_batch_size,
shuffle=True, **kwargs)
model = DenseED(x_train.shape[1], y_train.shape[1], blocks=args.blocks, growth_rate=args.growth_rate,
drop_rate=args.drop_rate, bn_size=args.bn_size,
num_init_features=args.init_features, bottleneck=args.bottleneck).to(device)
print(model)
print("number of parameters: {}\nnumber of layers: {}"
.format(*model._num_parameters_convlayers()))
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
scheduler = ReduceLROnPlateau(
optimizer, mode='min', factor=0.1, patience=10,
verbose=True, threshold=0.0001, threshold_mode='rel',
cooldown=0, min_lr=0, eps=1e-08)
n_out_pixels_train = len(train_loader.dataset) * train_loader.dataset[0][1].numel()
n_out_pixels_test = len(test_loader.dataset) * test_loader.dataset[0][1].numel()
# compute the quality metrics based on the test data and plot predictions (at specified epochs)
def test(epoch, plot_intv):
model.eval()
loss = 0.
for batch_idx, (input, target) in enumerate(test_loader):
input, target = input.to(device), target.to(device)
with th.no_grad():
output = model(input)
loss += F.mse_loss(output, target,size_average=False).item()
# plot predictions
if epoch % plot_intv == 0 and batch_idx == len(test_loader) - 1:
n_samples = 4
idx = th.LongTensor(np.random.choice(args.n_test, n_samples, replace=False))
print("Index of data: {}".format(idx))
print("X shape: {}".format(x_test.shape))
for i in range(n_samples):
model.eval()
x = x_test[ idx[i] * ntimes: (idx[i]+1) * ntimes]
y = y_test[ idx[i] * ntimes: (idx[i]+1) * ntimes]
y_output = np.full( (ntimes,y_test.shape[1],41,81), 0.0)
x_ii = np.full((1,x_test.shape[1],41,81), 0.0)
y_ii_1 = np.full((41,81), 0.0) # y_0 = 0
for ii in range(ntimes):
x_ii[0,0,:,:] = x[ii,0,:,:] # hydraulic conductivity
x_ii[0,1,:,:] = x[ii,1,:,:] # source rate
x_ii[0,2,:,:] = y_ii_1 # the ii_th predicted output
x_ii_tensor = (th.FloatTensor(x_ii)).to(device)
with th.no_grad():
y_hat = model(x_ii_tensor)
y_hat = y_hat.data.cpu().numpy()
y_output[ii] = y_hat
y_ii_1 = y_hat[0,0,:,:] # treat the current output as input to predict the ouput at next time step
y_target = np.full( (ntimes + 1,1,41,81), 0.0)
y_target[:ntimes] = y[:,[0]] # the concentration fields for one input conductivity fields at ntimes time steps
y_target[ntimes] = y[[0],[1]] # the pressure field
y_pred = np.full( (ntimes + 1,1,41,81), 0.0)
y_pred[:ntimes] = y_output[:,[0]]
y_pred[ntimes] = y_output[[0],[1]]
samples = np.vstack((y_target, y_pred, y_target - y_pred))
column = ntimes + 1
c_max = np.full( (column*3), 0.0) # the same color scale for the predicted output fields at the same time step
for l in range(column*3):
if l < column:
c_max[l] = np.max(samples[l])
elif column <= l < 2*column:
c_max[l] = np.max(samples[l])
if c_max[l] > c_max[l-column]:
c_max[l-column] = c_max[l]
else:
c_max[l] = c_max[l-column]
else:
c_max[l] = np.max( np.abs(samples[l]) )
LetterId = (['a','b','c','d', 'e','f','g','h', 'i','j','k','m'])
ylabel = (['$\mathbf{y}$', '$\hat{\mathbf{y}}$', '$\mathbf{y}-\hat{\mathbf{y}}$'])
fig = plt.figure(figsize=(4*4-0.5, 10))
outer = gridspec.GridSpec(2, 1, wspace=0.01, hspace=0.06)
nl = 40
m = 0
samp_id = [ [0,1,2,3, 8,9,10,11, 16,17,18,19], [4,5,6,7, 12,13,14,15, 20,21,22,23] ]
for j in range(2):
inner = gridspec.GridSpecFromSubplotSpec(3, 4, subplot_spec = outer[j], wspace=0.2, hspace=0.08)
l = 0
for k in range(3*4):
ax = plt.Subplot(fig, inner[k])
ax.set_aspect('equal')
ax.set_xticks([])
ax.set_yticks([])
s_id = samp_id[j][k]
if k < 2*4:
cax = ax.contourf(samples[ s_id,0], np.arange(0.0 , c_max[s_id] + c_max[s_id]/nl*1, c_max[s_id]/nl), cmap='jet')
fig.add_subplot(ax)
else:
cax = ax.contourf(samples[ s_id,0], np.arange(0.0 - c_max[s_id] - c_max[s_id]/nl*1, c_max[s_id] + c_max[s_id]/nl*1, c_max[s_id]/nl), cmap='jet',extend='both')
fig.add_subplot(ax)
ax.spines['left'].set_color('white')
ax.spines['right'].set_color('white')
ax.spines['bottom'].set_color('white')
ax.spines['top'].set_color('white')
cbar = plt.colorbar(cax, ax=ax, fraction=0.021, pad=0.04,
format=ticker.FuncFormatter(lambda x, pos: "%.3f" % x ))
cbar.ax.tick_params(labelsize=10)
if k < 4:
if j == 1 and k == 3:
ax.text(2, 33, '$({})$ head [L]'.format(LetterId[m]), fontsize=14,color='white')
else:
ax.text(2, 33, '$({})\ t={}$ [T]'.format(LetterId[m],(m+1)*2), fontsize=14,color='white')
m = m + 1
if np.mod(k,4) == 0:
if j == 0:
ax.set_ylabel(ylabel[l], fontsize=14)
l = 1 + l
else:
ax.set_ylabel(ylabel[l], fontsize=14)
l = 1 + l
plt.savefig(output_dir + '/epoch_{}_output_{}.png'.format(epoch, idx[i]),
bbox_inches='tight',dpi=400)
plt.close(fig)
print("epoch {}, done with printing sample output {}".format(epoch, idx[i]))
rmse_test = np.sqrt(loss / n_out_pixels_test)
r2_score = 1 - loss / test_stats['y_var']
print("epoch: {}, test r2-score: {:.4f}".format(epoch, r2_score))
return r2_score, rmse_test
def cal_R2():
"compute the test R2 score"
n_test = args.n_test
y_sum = np.full( (ntimes + 1,1,41,81), 0.0)
for i in range(n_test):
y = np.full( (ntimes + 1,1,41,81), 0.0)
y[:ntimes] = y_test[i * ntimes: (i+1) * ntimes,[0]] # concentration at n_t time instances
y[ntimes] = y_test[ i * ntimes,[1] ] # head
y_sum = y_sum + y
y_mean = y_sum / n_test
nominator = 0.0
denominator = 0.0
for i in range(n_test):
x = x_test[ i * ntimes: (i+1) * ntimes]
y = np.full( (ntimes + 1,1,41,81), 0.0)
y[:ntimes] = y_test[i * ntimes: (i+1) * ntimes,[0]] # concentration at n_t time instances
y[ntimes] = y_test[ i * ntimes,[1] ] # head
y_output = np.full( (ntimes + 1, 1,41,81), 0.0)
x_ii = np.full((1,x_test.shape[1],41,81), 0.0)
y_ii_1 = np.full((41,81), 0.0) # y_0 = 0
for ii in range(ntimes):
x_ii[0,0,:,:] = x[ii,0,:,:] # hydraulic conductivity
x_ii[0,1,:,:] = x[ii,1,:,:] # source rate
x_ii[0,2,:,:] = y_ii_1 # the ii_th predicted output
x_ii_tensor = (th.FloatTensor(x_ii)).to(device)
model.eval()
with th.no_grad():
y_hat = model(x_ii_tensor)
y_hat = y_hat.data.cpu().numpy()
y_output[ii,0] = y_hat[0,0]
if ii == ntimes - 1:
y_output[ii+1,0] = y_hat[0,1]
y_ii_1 = y_hat[0,0,:,:]
nominator = nominator + ((y - y_output)**2).sum()
denominator = denominator + ((y - y_mean)**2).sum()
R2 = 1 - nominator/denominator
print("R2: {}".format(R2))
return R2
# find the maximum absolute prediction error at Nt concentration fields in each test sample,
# i.e., the results shown in Figure 13 of the paper
def max_err():
n_test = args.n_test
ErrMax = np.zeros((n_test*Nt))
for i in range(n_test):
x = x_test[ i * ntimes: (i+1) * ntimes - 2]
y = np.full( (Nt,1,41,81), 0.0)
y[:Nt] = y_test[i * ntimes: (i+1) * ntimes - 2,[0]] # concentration at n_t time instances
y_output = np.full( (Nt, 1,41,81), 0.0)
x_ii = np.full((1,x_test.shape[1],41,81), 0.0)
y_ii_1 = np.full((41,81), 0.0) # y_0 = 0
for ii in range(Nt):
x_ii[0,0,:,:] = x[ii,0,:,:] # hydraulic conductivity
x_ii[0,1,:,:] = x[ii,1,:,:] # source rate
x_ii[0,2,:,:] = y_ii_1 # the ii_th predicted output
x_ii_tensor = (th.FloatTensor(x_ii)).to(device)
model.eval()
with th.no_grad():
y_hat = model(x_ii_tensor)
y_hat = y_hat.data.cpu().numpy()
y_output[ii,0] = y_hat[0,0]
y_ii_1 = y_hat[0,0,:,:]
err = np.abs(y - y_output)
ErrMax[i*Nt : (i+1)*Nt] = ( ( err.max(axis=1) ).max(axis=1) ).max(axis=1)
np.savetxt(exp_dir +'/TestErrMax_ntrain{}.dat'.format(args.n_train), ErrMax, fmt='%10.4f') # use exponential notation
return None
# extract the pixels at the source location (i,j) and its surrounding eight pixels, corresponding to Figure 7 in the paper
def conc_peak(conc,id_s):
conc_max = (th.zeros((conc.shape[0],conc.shape[1], *conc.shape[2:]), dtype=th.float)).to(device)
conc_max[id_s] = conc[id_s] # c(i,j)
id_s_j1 = np.array(id_s)
id_s_j1[[2],:] = np.array(id_s)[[2],:] + 1
conc_max[ tuple(id_s_j1) ] = conc[ tuple(id_s_j1)] # c(i,j+1)
id_s_j_1 = np.array(id_s)
id_s_j_1[[2],:] = np.array(id_s)[[2],:] - 1
conc_max[ tuple(id_s_j_1) ] = conc[ tuple(id_s_j_1)] # c(i,j-1)
id_s_i1 = np.array(id_s)
id_s_i1[[3],:] = np.array(id_s)[[3],:] + 1
conc_max[ tuple(id_s_i1) ] = conc[ tuple(id_s_i1)] # c(i+1,j)
id_s_i_1 = np.array(id_s)
id_s_i_1[[3],:] = np.array(id_s)[[3],:] - 1
conc_max[ tuple(id_s_i_1) ] = conc[ tuple(id_s_i_1)] # c(i-1,j)
id_s_i_1_j_1 = np.array(id_s)
id_s_i_1_j_1[[2,3],:] = np.array(id_s)[[2,3],:] - 1
conc_max[ tuple(id_s_i_1_j_1) ] = conc[ tuple(id_s_i_1_j_1)] # c(i-1,j-1)
id_s_i1_j1 = np.array(id_s)
id_s_i1_j1[[2,3],:] = np.array(id_s)[[2,3],:] + 1
conc_max[ tuple(id_s_i1_j1) ] = conc[ tuple(id_s_i1_j1)] # c(i+1,j+1)
id_s_i_1_j1 = np.array(id_s)
id_s_i_1_j1[[2],:] = np.array(id_s)[[2],:] + 1
id_s_i_1_j1[[3],:] = np.array(id_s)[[3],:] - 1
conc_max[ tuple(id_s_i_1_j1) ] = conc[ tuple(id_s_i_1_j1)] # c(i-1,j+1)
id_s_i1_j_1 = np.array(id_s)
id_s_i1_j_1[[2],:] = np.array(id_s)[[2],:] - 1
id_s_i1_j_1[[3],:] = np.array(id_s)[[3],:] + 1
conc_max[ tuple(id_s_i1_j_1) ] = conc[ tuple(id_s_i1_j_1)] # c(i+1,j-1)
return conc_max
# # * * * Uncomment the following lines to test using pretrained model * * * # #
# print('start predicting...')
# # load model
# model.load_state_dict(th.load(model_dir + '/model_epoch{}.pth'.format(args.n_epochs)))
# print('Loaded model')
# test(200, 25)
# sys.exit(0)
# MAIN ==============
tic = time()
R2_test_self = []
r2_train, r2_test = [], []
rmse_train, rmse_test = [], []
for epoch in range(1, args.n_epochs + 1):
# train
model.train()
mse = 0.
for batch_idx, (input, target) in enumerate(train_loader):
input, target= input.to(device), target.to(device)
conc = target[:,[0]] # added
source = input[:,[1]] # added
source = source.data.cpu().numpy()
id_s = np.where(source>0) # The location of source
conc_max = conc_peak(conc, id_s)
model.zero_grad()
output = model(input)
conc_hat = output[:,[0]]
conc_hat_max = conc_peak(conc_hat, id_s)
loss_all = F.l1_loss(output, target,size_average=False)
loss_peak = F.l1_loss(conc_hat_max, conc_max,size_average=False)
loss = loss_all + args.w_c*loss_peak
# for computing the RMSE criterion solely
loss_mse = F.mse_loss(output, target,size_average=False)
loss.backward()
optimizer.step()
mse += loss_mse.item()
rmse = np.sqrt(mse / n_out_pixels_train)
if epoch % args.log_interval == 0:
r2_score = 1 - mse / train_stats['y_var']
print("epoch: {}, training r2-score: {:.6f}".format(epoch, r2_score))
r2_train.append(r2_score)
rmse_train.append(rmse)
r2_t, rmse_t = test(epoch, plot_intv=args.plot_interval)
r2_test.append(r2_t)
rmse_test.append(rmse_t)
print("loss_all: {}, loss_peak: {}".format(loss_all, args.w_c*loss_peak))
scheduler.step(rmse)
# save model
if epoch == args.n_epochs:
th.save(model.state_dict(), model_dir + "/model_epoch{}.pth".format(epoch))
tic2 = time()
print("Done training {} epochs with {} data using {} seconds"
.format(args.n_epochs, args.n_train, tic2 - tic))
x = np.arange(args.log_interval, args.n_epochs + args.log_interval,
args.log_interval)
plt.figure()
plt.plot(x, r2_train, 'k', label="train: {:.3f}".format(np.mean(r2_train[-5: -1])))
plt.plot(x, r2_test, 'r', linestyle = '--', label="test: {:.3f}".format(np.mean(r2_test[-5: -1])))
plt.xlabel('Epoch', fontsize=14)
plt.ylabel('$R^2$', fontsize=14)
plt.legend(loc='lower right')
plt.savefig(exp_dir + "/r2.png", dpi=400)
plt.close()
np.savetxt(exp_dir + "/r2_train.txt", r2_train)
np.savetxt(exp_dir + "/r2_test.txt", r2_test)
plt.figure()
plt.plot(x, rmse_train, 'k', label="train: {:.3f}".format(np.mean(rmse_train[-5: -1])))
plt.plot(x, rmse_test, 'r', linestyle = '--', label="test: {:.3f}".format(np.mean(rmse_test[-5: -1])))
plt.xlabel('Epoch', fontsize=14)
plt.ylabel('RMSE', fontsize=14)
plt.legend(loc='upper right')
plt.savefig(exp_dir + "/rmse.png", dpi=400)
plt.close()
np.savetxt(exp_dir + "/rmse_train.txt", rmse_train)
np.savetxt(exp_dir + "/rmse_test.txt", rmse_test)
# save args and time taken
args_dict = {}
for arg in vars(args):
args_dict[arg] = getattr(args, arg)
args_dict['time'] = tic2 - tic
n_params, n_layers = model._num_parameters_convlayers()
args_dict['num_layers'] = n_layers
args_dict['num_params'] = n_params
with open(exp_dir + "/args.txt", 'w') as file:
file.write(json.dumps(args_dict))
R2_test_s = cal_R2()
R2_test_self.append(R2_test_s)
np.savetxt(exp_dir + "/R2_test_self.txt", R2_test_self)
max_err()