Skip to content

Latest commit

 

History

History
197 lines (150 loc) · 6.5 KB

readme.md

File metadata and controls

197 lines (150 loc) · 6.5 KB

A simple Machine Learning based Cloud Detection for AllSky Cameras

This python script will take an image from an AllSky camera, run it through a machine learning model and output cloud status to Home Assistant

Screenshots

Clear Skies alt text

Majority Clouds

Wisps of Clouds

Overcast

Docker (preferred method)

DEV Branch

dev Docker Image Size (dev)

Main branch

main Docker Image Size (latest)

docker run:

docker pull chvvkumar/simpleclouddetect:latest

docker run -d --name simple-cloud-detect --network=host \
  -e IMAGE_URL="http://localhost/current/resized/image.jpg" \
  -e MQTT_BROKER="192.168.1.250" \
  -e MQTT_PORT="1883" \
  -e MQTT_TOPIC="Astro/SimpleCloudDetect" \
  -e DETECT_INTERVAL="60" \
  chvvkumar/simpleclouddetect:latest

docker compose:

    simpleclouddetect:
        container_name: simple-cloud-detect
        network_mode: host
        environment:
            - IMAGE_URL=http://localhost/current/resized/image.jpg
            - MQTT_BROKER=192.168.1.250
            - MQTT_PORT=1883
            - MQTT_TOPIC=Astro/SimpleCloudDetect
            - DETECT_INTERVAL=60
        image: chvvkumar/simpleclouddetect:latest

Manual install and run Overview of operations

  • Ensure Python and Python-venv are version 3.11
  • Clone repo
  • Update variables
  • Create venv and activate it
  • Install dependencies from requirements.txt
  • Train your model (my model is included but YMMV with it) and copy to the project firectory
  • Configure your settings for image URL, MQTT server and Home Assistant sensors
  • Verify the output is as expected
  • Set the script to run on boot with cron

Preperation

If required, install python and python-venv with the correct versions

sudo  add-apt-repository  ppa:deadsnakes/ppa
sudo  apt  update
sudo  apt  install  python3.11
sudo  apt  install  python3.11-venv

Setup folders and venv:

cd
mkdir git
git clone [email protected]:chvvkumar/simpleCloudDetect.git
cd simpleCloudDetect
python3.11  -m  venv  env && source  env/bin/activate
pip  install  --upgrade  pip
pip  install  -r  requirements.txt

Update the script detect.py with your own settings for these parameters:

# Define parameters
image_url = "http://localhost/current/resized/image.jpg"
broker = "192.168.1.250"
port = 1883
topic = "Astro/SimpleCloudDetect"
detect_interval = 60

Training your model

The model I use is included in this repo for testing but it is highly recommended to train your own model with your data from your AllSky camera to get a more reliable prediction.

Head on to: https://teachablemachine.withgoogle.com

and follow the screenshots to generate a model.

alt text

alt text

alt text

alt text

Prepare the model for use

  • Copy the model file to your script folder where detect.py is located
  • Run `python3 convert.py' to convert the model for use
    python3 convert.py

Run the script to run detection once to test ecverything is working as expected.

python3  detect.py

Setup systemd service to automatically start the script on boot and run as a service

Copy the included service file to the systemd folder and enable it

cd
cd git/simpleCloudDetect
sudo cp detect.service /etc/systemd/system/detect.service
sudo systemctl daemon-reload
sudo systemctl enable detect.service
sudo systemctl start detect.service
sudo systemctl status detect.service

Exaample output on successful install

pi@allskypi5:~/git/simpleCloudDetect $ sudo systemctl status detect.service
● detect.service - Cloud Detection Service
     Loaded: loaded (/etc/systemd/system/detect.service; enabled; preset: enabled)
     Active: active (running) since Sat 2024-10-26 10:08:08 CDT; 5min ago
   Main PID: 5694 (python)
      Tasks: 14 (limit: 4443)
        CPU: 5.493s
     CGroup: /system.slice/detect.service
             └─5694 /home/pi/git/simpleCloudDetect/env/bin/python /home/pi/git/simpleCloudDetect/detect.py

Oct 26 10:10:12 allskypi5 python[5694]: [193B blob data]
Oct 26 10:11:12 allskypi5 python[5694]: Class: Clear Confidence Score: 1.0 Elapsed Time: 0.12
Oct 26 10:11:12 allskypi5 python[5694]: Published data to MQTT topic: Astro/SimpleCloudDetect Data: {"class_name": "Clear", "confidence_score": 100.0, "Detection Time (Seconds)": 0.12}
Oct 26 10:11:12 allskypi5 python[5694]: [193B blob data]
Oct 26 10:12:13 allskypi5 python[5694]: Class: Clear Confidence Score: 1.0 Elapsed Time: 0.11
Oct 26 10:12:13 allskypi5 python[5694]: Published data to MQTT topic: Astro/SimpleCloudDetect Data: {"class_name": "Clear", "confidence_score": 100.0, "Detection Time (Seconds)": 0.11}
Oct 26 10:12:13 allskypi5 python[5694]: [193B blob data]
Oct 26 10:13:13 allskypi5 python[5694]: Class: Clear Confidence Score: 1.0 Elapsed Time: 0.11
Oct 26 10:13:13 allskypi5 python[5694]: Published data to MQTT topic: Astro/SimpleCloudDetect Data: {"class_name": "Clear", "confidence_score": 100.0, "Detection Time (Seconds)": 0.11}
Oct 26 10:13:13 allskypi5 python[5694]: [193B blob data]

Add sensors to Home Assistant

Add this to your MQTT sensor configuration

- name: "Cloud Status"
    unique_id: DXWiwkjvhjhzf7KGwAFDAo7K
    icon: mdi:clouds
    state_topic: "Astro/Skytatus"
    value_template: "{{ value_json.class_name }}"

- name: "Cloud Status Confidence"
    unique_id: tdrgfwkjvhjhzf7KGwAFDAo7K
    icon: mdi:exclamation
    state_topic: "Astro/Skytatus"
    value_template: "{{ value_json.confidence_score | float * 100 }}"
    unit_of_measurement: "%"

- name: "Cloud Detection Time"
    unique_id: dfhfyuyjghjhcjzf7
    icon: mdi:exclamation
    state_topic: "Astro/SimpleCloudDetect"
    value_template: "{{ value_json['Detection Time (Seconds)'] }}"
    unit_of_measurement: "S"