Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TypeError: split() error #110

Open
marshjw opened this issue Jul 29, 2024 · 6 comments
Open

TypeError: split() error #110

marshjw opened this issue Jul 29, 2024 · 6 comments

Comments

@marshjw
Copy link

marshjw commented Jul 29, 2024

Hi,

I'm running CheckM2 with the following command:

checkm2 \
    predict \
        --threads 20 \
        --input $(cat {input_file}) \
        --output-directory {output_dir} \
        --allmodels \
        --extension fasta \
        --database_path {database_path}

However, I'm getting the error:

[07/29/2024 09:58:00 AM] INFO: Processing DIAMOND output
Traceback (most recent call last):
  File "/code/conda_envs/checkm2/bin/checkm2", line 4, in <module>
    __import__('pkg_resources').run_script('CheckM2==1.0.2', 'checkm2')
  File "/code/conda_envs/checkm2/lib/python3.8/site-packages/pkg_resources/__init__.py", line 752, in run_script
    self.require(requires)[0].run_script(script_name, ns)
  File "/code/conda_envs/checkm2/lib/python3.8/site-packages/pkg_resources/__init__.py", line 1718, in run_script
    exec(code, namespace, namespace)
  File "/code/conda_envs/checkm2/lib/python3.8/site-packages/CheckM2-1.0.2-py3.8.egg/EGG-INFO/scripts/checkm2", line 244, in <module>
    predictor.prediction_wf(args.genes, mode, args.dbg_cos, args.dbg_vectors,
  File "/code/conda_envs/checkm2/lib/python3.8/site-packages/CheckM2-1.0.2-py3.8.egg/checkm2/predictQuality.py", line 149, in prediction_wf
    results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, 1, expand=True)
  File "/.local/lib/python3.8/site-packages/pandas/core/strings/accessor.py", line 129, in wrapper
    return func(self, *args, **kwargs)
TypeError: split() takes from 1 to 2 positional arguments but 3 positional arguments (and 1 keyword-only argument) were given

I installed CheckM2 using pip. Here's my environment:

# Name                    Version                   Build  Channel
_libgcc_mutex             0.1                 conda_forge    conda-forge
_openmp_mutex             4.5                       2_gnu    conda-forge
_tflow_select             2.3.0                     eigen
abseil-cpp                20200923.3           h9c3ff4c_0    conda-forge
absl-py                   2.1.0              pyhd8ed1ab_0    conda-forge
aiohttp                   3.9.5            py38h01eb140_0    conda-forge
aiosignal                 1.3.1              pyhd8ed1ab_0    conda-forge
astor                     0.8.1              pyh9f0ad1d_0    conda-forge
astunparse                1.6.3              pyhd8ed1ab_0    conda-forge
async-timeout             4.0.3              pyhd8ed1ab_0    conda-forge
attrs                     23.2.0             pyh71513ae_0    conda-forge
blinker                   1.8.2              pyhd8ed1ab_0    conda-forge
boost-cpp                 1.70.0               h7b93d67_3    conda-forge
brotli-python             1.1.0            py38h17151c0_1    conda-forge
bzip2                     1.0.8                h4bc722e_7    conda-forge
c-ares                    1.32.3               h4bc722e_0    conda-forge
ca-certificates           2024.7.4             hbcca054_0    conda-forge
cachetools                4.2.4              pyhd8ed1ab_0    conda-forge
certifi                   2024.7.4           pyhd8ed1ab_0    conda-forge
cffi                      1.16.0           py38h6d47a40_0    conda-forge
charset-normalizer        3.3.2              pyhd8ed1ab_0    conda-forge
checkm2                   1.0.2                    pypi_0    pypi
click                     8.1.7           unix_pyh707e725_0    conda-forge
colorama                  0.4.6              pyhd8ed1ab_0    conda-forge
cryptography              42.0.8           py38h1407eca_0    conda-forge
diamond                   2.0.4                h56fc30b_0    bioconda
frozenlist                1.4.1            py38h01eb140_0    conda-forge
gast                      0.3.3                      py_0    conda-forge
giflib                    5.2.2                hd590300_0    conda-forge
google-auth               1.35.0             pyh6c4a22f_0    conda-forge
google-auth-oauthlib      0.4.6              pyhd8ed1ab_0    conda-forge
google-pasta              0.2.0              pyh8c360ce_0    conda-forge
grpc-cpp                  1.39.0               hae934f6_5
grpcio                    1.46.3           py38h2e9ca35_0    conda-forge
h2                        4.1.0              pyhd8ed1ab_0    conda-forge
h5py                      2.10.0          nompi_py38h9915d05_106    conda-forge
hdf5                      1.10.6               h3ffc7dd_1
hpack                     4.0.0              pyh9f0ad1d_0    conda-forge
hyperframe                6.0.1              pyhd8ed1ab_0    conda-forge
icu                       67.1                 he1b5a44_0    conda-forge
idna                      3.7                pyhd8ed1ab_0    conda-forge
importlib-metadata        8.2.0              pyha770c72_0    conda-forge
joblib                    1.4.2              pyhd8ed1ab_0    conda-forge
jpeg                      9e                   h0b41bf4_3    conda-forge
keras-preprocessing       1.1.2              pyhd8ed1ab_0    conda-forge
keyutils                  1.6.1                h166bdaf_0    conda-forge
krb5                      1.20.1               h81ceb04_0    conda-forge
ld_impl_linux-64          2.40                 hf3520f5_7    conda-forge
libblas                   3.9.0           20_linux64_openblas    conda-forge
libcblas                  3.9.0           20_linux64_openblas    conda-forge
libcurl                   7.88.1               hdc1c0ab_0    conda-forge
libedit                   3.1.20191231         he28a2e2_2    conda-forge
libev                     4.33                 hd590300_2    conda-forge
libffi                    3.4.2                h7f98852_5    conda-forge
libgcc-ng                 14.1.0               h77fa898_0    conda-forge
libgfortran-ng            14.1.0               h69a702a_0    conda-forge
libgfortran5              14.1.0               hc5f4f2c_0    conda-forge
libgomp                   14.1.0               h77fa898_0    conda-forge
liblapack                 3.9.0           20_linux64_openblas    conda-forge
libnghttp2                1.58.0               h47da74e_1    conda-forge
libnsl                    2.0.1                hd590300_0    conda-forge
libopenblas               0.3.25          pthreads_h413a1c8_0    conda-forge
libpng                    1.6.43               h2797004_0    conda-forge
libprotobuf               3.17.2               h780b84a_1    conda-forge
libsqlite                 3.46.0               hde9e2c9_0    conda-forge
libssh2                   1.11.0               h0841786_0    conda-forge
libstdcxx-ng              14.1.0               hc0a3c3a_0    conda-forge
libuuid                   2.38.1               h0b41bf4_0    conda-forge
libxcrypt                 4.4.36               hd590300_1    conda-forge
libzlib                   1.2.13               h4ab18f5_6    conda-forge
lightgbm                  3.2.1            py38h709712a_0    conda-forge
lz4-c                     1.9.3                h9c3ff4c_1    conda-forge
markdown                  3.6                pyhd8ed1ab_0    conda-forge
markupsafe                2.1.5            py38h01eb140_0    conda-forge
multidict                 6.0.5            py38h01eb140_0    conda-forge
ncurses                   6.5                  h59595ed_0    conda-forge
numpy                     1.20.3           py38h8246c76_2    conda-forge
oauthlib                  3.2.2              pyhd8ed1ab_0    conda-forge
openssl                   3.3.1                h4bc722e_2    conda-forge
opt_einsum                3.3.0              pyhc1e730c_2    conda-forge
packaging                 24.1               pyhd8ed1ab_0    conda-forge
pandas                    1.4.0            py38h43a58ef_0    conda-forge
pip                       24.0               pyhd8ed1ab_0    conda-forge
prodigal                  2.6.3                h031d066_9    bioconda
protobuf                  3.17.2           py38h709712a_0    conda-forge
pyasn1                    0.6.0              pyhd8ed1ab_0    conda-forge
pyasn1-modules            0.4.0              pyhd8ed1ab_0    conda-forge
pycparser                 2.22               pyhd8ed1ab_0    conda-forge
pyjwt                     2.8.0              pyhd8ed1ab_1    conda-forge
pyopenssl                 24.2.1             pyhd8ed1ab_0    conda-forge
pysocks                   1.7.1              pyha2e5f31_6    conda-forge
python                    3.8.19          hd12c33a_0_cpython    conda-forge
python-dateutil           2.9.0              pyhd8ed1ab_0    conda-forge
python-flatbuffers        1.12               pyhd8ed1ab_1    conda-forge
python_abi                3.8                      4_cp38    conda-forge
pytz                      2024.1             pyhd8ed1ab_0    conda-forge
pyu2f                     0.1.5              pyhd8ed1ab_0    conda-forge
re2                       2021.04.01           h9c3ff4c_0    conda-forge
readline                  8.2                  h8228510_1    conda-forge
requests                  2.32.3             pyhd8ed1ab_0    conda-forge
requests-oauthlib         2.0.0              pyhd8ed1ab_0    conda-forge
rsa                       4.9                pyhd8ed1ab_0    conda-forge
scikit-learn              0.23.2           py38h5d63f67_3    conda-forge
scipy                     1.8.0            py38h56a6a73_1    conda-forge
setuptools                71.0.4             pyhd8ed1ab_0    conda-forge
six                       1.16.0             pyh6c4a22f_0    conda-forge
snappy                    1.1.10               hdb0a2a9_1    conda-forge
tensorboard               2.4.1              pyhd8ed1ab_1    conda-forge
tensorboard-plugin-wit    1.8.1              pyhd8ed1ab_0    conda-forge
tensorflow                2.3.0           eigen_py38h71ff20e_0
tensorflow-base           2.3.0           eigen_py38hb57a387_0
tensorflow-estimator      2.4.0              pyh9656e83_0    conda-forge
termcolor                 2.4.0              pyhd8ed1ab_0    conda-forge
threadpoolctl             3.5.0              pyhc1e730c_0    conda-forge
tk                        8.6.13          noxft_h4845f30_101    conda-forge
tqdm                      4.66.4             pyhd8ed1ab_0    conda-forge
typing-extensions         4.12.2               hd8ed1ab_0    conda-forge
typing_extensions         4.12.2             pyha770c72_0    conda-forge
urllib3                   2.2.2              pyhd8ed1ab_1    conda-forge
werkzeug                  3.0.3              pyhd8ed1ab_0    conda-forge
wheel                     0.43.0             pyhd8ed1ab_1    conda-forge
wrapt                     1.16.0           py38h01eb140_0    conda-forge
xz                        5.2.6                h166bdaf_0    conda-forge
yarl                      1.9.4            py38h01eb140_0    conda-forge
zipp                      3.19.2             pyhd8ed1ab_0    conda-forge
zlib                      1.2.13               h4ab18f5_6    conda-forge
zstandard                 0.19.0           py38h0a891b7_0    conda-forge
zstd                      1.4.9                ha95c52a_0    conda-forge

Thanks for your help.

@harrytchild
Copy link

Hi,

I am having the similar issue running the checkm2 testrun. I followed the "Run without installing" instructions. I get the following error:
$ bin/checkm2 testrun --database_path CheckM2_database/uniref100.KO.1.dmnd
[09/05/2024 09:14:18 AM] INFO: Calling genes in 3 bins with 30 threads:
Finished processing 3 of 3 (100.00%) bins.
[09/05/2024 09:14:33 AM] INFO: Calculating metadata for 3 bins with 30 threads:
Finished processing 3 of 3 (100.00%) bin metadata.
[09/05/2024 09:14:34 AM] INFO: Annotating input genomes with DIAMOND using 30 threads
[09/05/2024 09:15:00 AM] INFO: Processing DIAMOND output
Traceback (most recent call last):
File "bin/checkm2", line 267, in
predictor.prediction_wf(False, 'auto', False, False, False)
File "/localdata/harry/programs/checkm2/bin/../checkm2/predictQuality.py", line 149, in prediction_wf
results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, 1, expand=True)
File "/home/harry/.local/lib/python3.8/site-packages/pandas/core/strings/accessor.py", line 129, in wrapper
return func(self, *args, **kwargs)
TypeError: split() takes from 1 to 2 positional arguments but 3 positional arguments (and 1 keyword-only argument) were given

Any help to resolve this would be great!

@marshomics
Copy link

marshomics commented Sep 5, 2024

I got it to work by changing these lines in predictQuality.py from:

results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, 1, expand=True)
results[['Ref100_hit', 'Kegg_annotation']] = results['annotation'].str.split('~', 1, expand=True)

to:

results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, n=1, expand=True)
results[['Ref100_hit', 'Kegg_annotation']] = results['annotation'].str.split('~', n=1, expand=True)

and then running it locally: bin/checkm2

@harrytchild
Copy link

Hi,

Thanks for looking into this. After making this change I get the following error message:

[09/06/2024 10:04:29 AM] INFO: Annotating input genomes with DIAMOND using 1 threads
[09/06/2024 10:14:03 AM] INFO: Processing DIAMOND output
[09/06/2024 10:14:03 AM] INFO: Predicting completeness and contamination using ML models.
Traceback (most recent call last):
  File "bin/checkm2", line 267, in <module>
    predictor.prediction_wf(False, 'auto', False, False, False)
  File "/localdata/harry/programs/checkm2/bin/../checkm2/predictQuality.py", line 205, in prediction_wf
    vector_array = feature_vectors.iloc[:, 1:].values.astype(np.float)
  File "/home/harry/.local/lib/python3.8/site-packages/numpy/__init__.py", line 305, in __getattr__
    raise AttributeError(__former_attrs__[attr])
AttributeError: module 'numpy' has no attribute 'float'.
`np.float` was a deprecated alias for the builtin `float`. To avoid this error in existing code, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here.
The aliases was originally deprecated in NumPy 1.20; for more details and guidance see the original release note at:
    https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

I tried editing the script to include just "float" and "np.float64", but both of these then lead to this error:

[09/06/2024 10:34:36 AM] INFO: Annotating input genomes with DIAMOND using 1 threads
[09/06/2024 10:45:50 AM] INFO: Processing DIAMOND output
[09/06/2024 10:45:50 AM] INFO: Predicting completeness and contamination using ML models.
Traceback (most recent call last):
  File "bin/checkm2", line 267, in <module>
    predictor.prediction_wf(False, 'auto', False, False, False)
  File "/localdata/harry/programs/checkm2/bin/../checkm2/predictQuality.py", line 215, in prediction_wf
    specific_result_comp, scaled_features = modelProc.run_prediction_specific(vector_array, specific_model_vector_len)
  File "/localdata/harry/programs/checkm2/bin/../checkm2/modelProcessing.py", line 68, in run_prediction_specific
    scaled_vector = self.minmax_scaler.transform(vector_array)
  File "/home/harry/.local/lib/python3.8/site-packages/sklearn/utils/_set_output.py", line 157, in wrapped
    data_to_wrap = f(self, X, *args, **kwargs)
  File "/home/harry/.local/lib/python3.8/site-packages/sklearn/preprocessing/_data.py", line 525, in transform
    if self.clip:
AttributeError: 'MinMaxScaler' object has no attribute 'clip'

I fear I'm going down a but of a rabbit hole if I continue trying to fix myself, but maybe you can find a better solution which can be implemented?

Cheers!

@marshomics
Copy link

Hi,

I think you need a newer Numpy version, despite what the documentation says. This program was a huge pain to install given all the conflicting dependencies and I tried every combination of installation instructions without success. Ultimately, this is what worked for me:

mamba clean --all
git clone --recursive https://github.com/chklovski/checkm2.git
cd checkm2 

Then change the checkm2.yml file to this:

channels:
  - conda-forge
  - bioconda
dependencies:
  - python>=3.7, <3.9
  - scikit-learn=0.23.2
  - h5py=2.10.0
  - numpy=1.20.3
  - diamond=2.1.8
  - tensorflow >= 2.2.0, <2.6.0
  - lightgbm=3.2.1
  - scipy=1.8.0
  - prodigal=2.6.3
  - setuptools
  - requests
  - packaging
  - tqdm
mamba env create -n checkm2 -f checkm2.yml
mamba activate checkm2
pip install CheckM2

Change the following lines in predictQuality.py:

results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, 1, expand=True)
results[['Ref100_hit', 'Kegg_annotation']] = results['annotation'].str.split('~', 1, expand=True)

to:

results[['GenomeName', 'ProteinID']] = results['header'].str.split(diamond_search.separator, n=1, expand=True)
results[['Ref100_hit', 'Kegg_annotation']] = results['annotation'].str.split('~', n=1, expand=True)

Then run checkm2 from the local installation:

bin/checkm2

That's what worked for me. Also, running mamba clean --all at the beginning was critical. Hope that helps!

@harrytchild
Copy link

Thanks for your help. I agree it is a dependancy nightmare, but I don't envy the developers for the maintenance they have to do!

Unfortunately, I'm still getting errors with your installation method. Are you able to attach a YML file of your conda environment so I can try installing that with all the specific package versions you have?

Cheers

@marshomics
Copy link

Sorry to hear that. Sure, here it is:

name: checkm2
channels:
  - conda-forge
  - bioconda
dependencies:
  - _libgcc_mutex=0.1=conda_forge
  - _openmp_mutex=4.5=2_gnu
  - abseil-cpp=20210324.2=h9c3ff4c_0
  - aiohappyeyeballs=2.4.0=pyhd8ed1ab_0
  - aiohttp=3.10.5=py38h2019614_0
  - aiosignal=1.3.1=pyhd8ed1ab_0
  - astor=0.8.1=pyh9f0ad1d_0
  - astunparse=1.6.3=pyhd8ed1ab_0
  - async-timeout=4.0.3=pyhd8ed1ab_0
  - attrs=24.2.0=pyh71513ae_0
  - blast=2.16.0=hc155240_2
  - blinker=1.8.2=pyhd8ed1ab_0
  - brotli-python=1.1.0=py38h17151c0_1
  - bzip2=1.0.8=h4bc722e_7
  - c-ares=1.33.1=heb4867d_0
  - ca-certificates=2024.8.30=hbcca054_0
  - cachetools=4.2.4=pyhd8ed1ab_0
  - certifi=2024.8.30=pyhd8ed1ab_0
  - cffi=1.17.0=py38heb5c249_0
  - charset-normalizer=3.3.2=pyhd8ed1ab_0
  - click=8.1.7=unix_pyh707e725_0
  - colorama=0.4.6=pyhd8ed1ab_0
  - cryptography=39.0.0=py38h1724139_0
  - curl=7.87.0=h6312ad2_0
  - diamond=2.1.8=h43eeafb_0
  - entrez-direct=22.4=he881be0_0
  - frozenlist=1.4.1=py38h01eb140_0
  - gast=0.3.3=py_0
  - gettext=0.22.5=he02047a_3
  - gettext-tools=0.22.5=he02047a_3
  - giflib=5.2.2=hd590300_0
  - google-auth=1.35.0=pyh6c4a22f_0
  - google-auth-oauthlib=0.4.6=pyhd8ed1ab_0
  - google-pasta=0.2.0=pyhd8ed1ab_1
  - grpc-cpp=1.37.1=hfc4d69e_3
  - grpcio=1.37.1=py38hdd6454d_0
  - h2=4.1.0=pyhd8ed1ab_0
  - h5py=2.10.0=nompi_py38h9915d05_106
  - hdf5=1.10.6=nompi_h6a2412b_1114
  - hpack=4.0.0=pyh9f0ad1d_0
  - hyperframe=6.0.1=pyhd8ed1ab_0
  - icu=68.2=h9c3ff4c_0
  - idna=3.8=pyhd8ed1ab_0
  - importlib-metadata=8.4.0=pyha770c72_0
  - joblib=1.4.2=pyhd8ed1ab_0
  - jpeg=9e=h0b41bf4_3
  - keras-preprocessing=1.1.2=pyhd8ed1ab_0
  - keyutils=1.6.1=h166bdaf_0
  - krb5=1.20.1=hf9c8cef_0
  - ld_impl_linux-64=2.40=hf3520f5_7
  - libasprintf=0.22.5=he8f35ee_3
  - libasprintf-devel=0.22.5=he8f35ee_3
  - libblas=3.9.0=20_linux64_openblas
  - libcblas=3.9.0=20_linux64_openblas
  - libcurl=7.87.0=h6312ad2_0
  - libedit=3.1.20191231=he28a2e2_2
  - libev=4.33=hd590300_2
  - libffi=3.4.2=h7f98852_5
  - libgcc=14.1.0=h77fa898_1
  - libgcc-ng=14.1.0=h69a702a_1
  - libgettextpo=0.22.5=he02047a_3
  - libgettextpo-devel=0.22.5=he02047a_3
  - libgfortran=14.1.0=h69a702a_1
  - libgfortran-ng=14.1.0=h69a702a_1
  - libgfortran5=14.1.0=hc5f4f2c_1
  - libgomp=14.1.0=h77fa898_1
  - libidn2=2.3.7=hd590300_0
  - liblapack=3.9.0=20_linux64_openblas
  - libnghttp2=1.51.0=hdcd2b5c_0
  - libnsl=2.0.1=hd590300_0
  - libopenblas=0.3.25=pthreads_h413a1c8_0
  - libpng=1.6.43=h2797004_0
  - libprotobuf=3.15.8=h780b84a_1
  - libsqlite=3.46.0=hde9e2c9_0
  - libssh2=1.10.0=haa6b8db_3
  - libstdcxx=14.1.0=hc0a3c3a_1
  - libstdcxx-ng=14.1.0=h4852527_1
  - libunistring=0.9.10=h7f98852_0
  - libuuid=2.38.1=h0b41bf4_0
  - libxcrypt=4.4.36=hd590300_1
  - libzlib=1.2.13=h4ab18f5_6
  - lightgbm=3.2.1=py38h709712a_0
  - markdown=3.6=pyhd8ed1ab_0
  - markupsafe=2.1.5=py38h01eb140_0
  - multidict=6.0.5=py38h01eb140_0
  - ncbi-vdb=3.1.1=h4ac6f70_1
  - ncurses=6.5=he02047a_1
  - numpy=1.20.3=py38h8246c76_2
  - oauthlib=3.2.2=pyhd8ed1ab_0
  - openssl=1.1.1w=hd590300_0
  - opt_einsum=3.3.0=pyhc1e730c_2
  - packaging=24.1=pyhd8ed1ab_0
  - perl=5.32.1=7_hd590300_perl5
  - perl-archive-tar=2.40=pl5321hdfd78af_0
  - perl-carp=1.50=pl5321hd8ed1ab_0
  - perl-common-sense=3.75=pl5321hd8ed1ab_0
  - perl-compress-raw-bzip2=2.201=pl5321h166bdaf_0
  - perl-compress-raw-zlib=2.202=pl5321h166bdaf_0
  - perl-encode=3.21=pl5321hd590300_0
  - perl-exporter=5.74=pl5321hd8ed1ab_0
  - perl-exporter-tiny=1.002002=pl5321hd8ed1ab_0
  - perl-extutils-makemaker=7.70=pl5321hd8ed1ab_0
  - perl-io-compress=2.201=pl5321hdbdd923_2
  - perl-io-zlib=1.14=pl5321hdfd78af_0
  - perl-json=4.10=pl5321hdfd78af_1
  - perl-json-xs=4.03=pl5321h4ac6f70_3
  - perl-list-moreutils=0.430=pl5321hdfd78af_0
  - perl-list-moreutils-xs=0.430=pl5321h031d066_2
  - perl-parent=0.241=pl5321hd8ed1ab_0
  - perl-pathtools=3.75=pl5321h166bdaf_0
  - perl-scalar-list-utils=1.63=pl5321h166bdaf_0
  - perl-storable=3.15=pl5321h166bdaf_0
  - perl-types-serialiser=1.01=pl5321hdfd78af_0
  - pip=24.2=pyh8b19718_1
  - prodigal=2.6.3=h031d066_9
  - protobuf=3.15.8=py38h709712a_0
  - pyasn1=0.6.0=pyhd8ed1ab_0
  - pyasn1-modules=0.4.0=pyhd8ed1ab_0
  - pycparser=2.22=pyhd8ed1ab_0
  - pyjwt=2.9.0=pyhd8ed1ab_1
  - pyopenssl=23.2.0=pyhd8ed1ab_1
  - pysocks=1.7.1=pyha2e5f31_6
  - python=3.8.15=h257c98d_0_cpython
  - python-flatbuffers=1.12=pyhd8ed1ab_1
  - python_abi=3.8=5_cp38
  - pyu2f=0.1.5=pyhd8ed1ab_0
  - re2=2021.08.01=h9c3ff4c_0
  - readline=8.2=h8228510_1
  - requests=2.32.3=pyhd8ed1ab_0
  - requests-oauthlib=2.0.0=pyhd8ed1ab_0
  - rpsbproc=0.5.0=h6a68c12_0
  - rsa=4.9=pyhd8ed1ab_0
  - scikit-learn=0.23.2=py38h5d63f67_3
  - scipy=1.8.0=py38h56a6a73_1
  - setuptools=73.0.1=pyhd8ed1ab_0
  - six=1.15.0=pyh9f0ad1d_0
  - snappy=1.1.10=hdb0a2a9_1
  - sqlite=3.46.0=h6d4b2fc_0
  - tensorboard=2.4.1=pyhd8ed1ab_1
  - tensorboard-plugin-wit=1.8.1=pyhd8ed1ab_0
  - tensorflow=2.4.3=py38h578d9bd_0
  - tensorflow-base=2.4.3=py38h83f5f1d_0
  - tensorflow-estimator=2.4.0=pyh9656e83_0
  - threadpoolctl=3.5.0=pyhc1e730c_0
  - tk=8.6.13=noxft_h4845f30_101
  - tqdm=4.66.5=pyhd8ed1ab_0
  - typing-extensions=3.7.4.3=0
  - typing_extensions=3.7.4.3=py_0
  - urllib3=2.2.2=pyhd8ed1ab_1
  - werkzeug=3.0.4=pyhd8ed1ab_0
  - wget=1.20.3=ha56f1ee_1
  - wheel=0.44.0=pyhd8ed1ab_0
  - xz=5.2.6=h166bdaf_0
  - yarl=1.9.4=py38h01eb140_0
  - zipp=3.20.1=pyhd8ed1ab_0
  - zlib=1.2.13=h4ab18f5_6
  - zstandard=0.23.0=py38h62bed22_0
  - zstd=1.5.6=ha6fb4c9_0
  - pip:
      - absl-py==0.15.0
      - termcolor==1.1.0
      - wrapt==1.12.1
prefix: /conda_envs/checkm2

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants