forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
418 lines (339 loc) · 13.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# Copyright © 2023-2024 Apple Inc.
import glob
import json
import logging
import math
from dataclasses import dataclass
from pathlib import Path
from typing import Optional
import mlx.core as mx
import mlx.nn as nn
from mlx.core import linalg as LA
from mlx.nn.losses import cross_entropy
@dataclass
class CLIPVisionOutput:
pooler_output: mx.array
last_hidden_state: mx.array
hidden_states: Optional[mx.array]
@dataclass
class CLIPTextOutput:
pooler_output: mx.array
last_hidden_state: mx.array
@dataclass
class CLIPModelOutput:
loss: Optional[mx.array]
text_embeds: Optional[mx.array]
image_embeds: Optional[mx.array]
text_model_output: CLIPTextOutput
vision_model_output: CLIPVisionOutput
@dataclass
class CLIPTextConfig:
num_hidden_layers: int
hidden_size: int
intermediate_size: int
num_attention_heads: int
max_position_embeddings: int
vocab_size: int
layer_norm_eps: float
@dataclass
class CLIPVisionConfig:
num_hidden_layers: int
hidden_size: int
intermediate_size: int
num_attention_heads: int
num_channels: int
image_size: int
patch_size: int
layer_norm_eps: float
@dataclass
class CLIPConfig:
text_config: CLIPTextConfig
vision_config: CLIPVisionConfig
projection_dim: int
def quick_gelu(x: mx.array) -> mx.array:
"""
A fast GELU approximation https://github.com/hendrycks/GELUs
"""
return x * mx.sigmoid(1.702 * x)
def clip_loss(logits: mx.array) -> mx.array:
N, M = logits.shape
caption_loss = cross_entropy(logits, mx.arange(N), reduction="mean")
image_loss = cross_entropy(logits.T, mx.arange(M), reduction="mean")
return (caption_loss + image_loss) / 2.0
class Attention(nn.Module):
def __init__(
self,
dims: int,
num_heads: int,
query_input_dims: Optional[int] = None,
key_input_dims: Optional[int] = None,
value_input_dims: Optional[int] = None,
value_dims: Optional[int] = None,
value_output_dims: Optional[int] = None,
bias: bool = False,
):
super().__init__()
if (dims % num_heads) != 0:
raise ValueError(
"The input feature dimensions should be divisible by the "
f"number of heads ({dims} % {num_heads}) != 0"
)
query_input_dims = query_input_dims or dims
key_input_dims = key_input_dims or dims
value_input_dims = value_input_dims or key_input_dims
value_dims = value_dims or dims
value_output_dims = value_output_dims or dims
self.num_heads = num_heads
self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
def __call__(self, queries, keys, values, mask=None):
queries = self.q_proj(queries)
keys = self.k_proj(keys)
values = self.v_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
_, S, _ = keys.shape
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 3, 1)
values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys
if mask is not None:
scores = scores + mask.astype(scores.dtype)
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat)
class MLP(nn.Module):
def __init__(self, config: CLIPTextConfig):
super().__init__()
self.config = config
self.activation_fn = quick_gelu
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def __call__(self, x: mx.array) -> mx.array:
x = self.activation_fn(self.fc1(x))
x = self.fc2(x)
return x
class EncoderLayer(nn.Module):
"""The transformer encoder layer from CLIP."""
def __init__(self, config: CLIPTextConfig):
super().__init__()
self.embed_dim = config.hidden_size
# Add biases to the attention projections
self.self_attn = Attention(
config.hidden_size, config.num_attention_heads, bias=True
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = MLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
y = self.layer_norm1(x)
y = self.self_attn(y, y, y, mask)
x = x + y
y = self.layer_norm2(x)
y = self.mlp(y)
return x + y
class TextEmbeddings(nn.Module):
def __init__(self, config: CLIPTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(
config.max_position_embeddings, embed_dim
)
def __call__(self, x: mx.array) -> mx.array:
embeddings = self.token_embedding(x)
embeddings += self.position_embedding.weight[: x.shape[1]]
return embeddings
class Encoder(nn.Module):
def __init__(self, config: CLIPTextConfig):
self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
class ClipTextModel(nn.Module):
"""Implements the text encoder transformer from CLIP."""
def __init__(self, config: CLIPTextConfig):
super().__init__()
self.embeddings = TextEmbeddings(config)
self.encoder = Encoder(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size)
def __call__(self, x: mx.array) -> CLIPTextOutput:
B, N = x.shape
eot_tokens = mx.argmax(x, axis=-1)
x = self.embeddings(x)
mask = nn.MultiHeadAttention.create_additive_causal_mask(N, x.dtype)
for l in self.encoder.layers:
x = l(x, mask)
last_hidden_state = self.final_layer_norm(x)
pooler_output = last_hidden_state[mx.arange(B), eot_tokens]
return CLIPTextOutput(
pooler_output=pooler_output, last_hidden_state=last_hidden_state
)
class VisionEmbeddings(nn.Module):
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = mx.zeros((config.hidden_size,))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
def __call__(self, x: mx.array) -> mx.array:
batch_size = x.shape[0]
# Patchify using conv:
# [batch_size, sqrt(num_patches), sqrt(num_patches), embed_dim]
patch_embeddings = self.patch_embedding(x)
# [batch_size, num_patches, embed_dim]
patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
embed_dim = patch_embeddings.shape[-1]
# Prepend <CLS> embeddings
# [batch_size, 1, embed_dim]
cls_embeddings = mx.broadcast_to(
self.class_embedding, (batch_size, 1, embed_dim)
)
# [batch_size, num_patches + 1, embed_dim]
embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
# Add positional encoding
embeddings += self.position_embedding.weight
return embeddings
class ClipVisionModel(nn.Module):
"""Implements the vision encoder transformer from CLIP."""
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.embeddings = VisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
self.encoder = Encoder(config)
self.post_layernorm = nn.LayerNorm(config.hidden_size)
def __call__(
self,
x: mx.array,
output_hidden_states: Optional[bool] = None,
) -> CLIPVisionOutput:
x = self.embeddings(x)
x = self.pre_layrnorm(x)
encoder_states = (x,) if output_hidden_states else None
for l in self.encoder.layers:
x = l(x, mask=None)
if output_hidden_states:
encoder_states = encoder_states + (x,)
# Extract <CLS> token embedding
pooler_output = self.post_layernorm(x[:, 0, :])
return CLIPVisionOutput(
pooler_output=pooler_output,
last_hidden_state=x,
hidden_states=encoder_states,
)
class CLIPModel(nn.Module):
def __init__(self, config: CLIPConfig):
self.text_model = ClipTextModel(config.text_config)
self.vision_model = ClipVisionModel(config.vision_config)
text_embed_dim = config.text_config.hidden_size
vision_embed_dim = config.vision_config.hidden_size
projection_dim = config.projection_dim
self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
self.text_projection = nn.Linear(text_embed_dim, projection_dim, bias=False)
self.logit_scale = mx.array(0.0)
def get_text_features(self, x: mx.array) -> mx.array:
return self.text_projection(self.text_model(x).pooler_output)
def get_image_features(self, x: mx.array) -> mx.array:
return self.visual_projection(self.vision_model(x).pooler_output)
def __call__(
self,
input_ids: Optional[mx.array] = None,
pixel_values: Optional[mx.array] = None,
return_loss=False,
) -> CLIPModelOutput:
if input_ids is not None:
text_model_output = self.text_model(input_ids)
text_embeds = self.text_projection(text_model_output.pooler_output)
text_embeds = text_embeds / LA.norm(text_embeds, axis=-1, keepdims=True)
else:
text_embeds = None
text_model_output = None
if pixel_values is not None:
vision_model_output = self.vision_model(pixel_values)
image_embeds = self.visual_projection(vision_model_output.pooler_output)
image_embeds = image_embeds / LA.norm(image_embeds, axis=-1, keepdims=True)
else:
image_embeds = None
vision_model_output = None
if return_loss and (input_ids is None or pixel_values is None):
raise ValueError("Must provide text and image inputs to compute loss.")
if return_loss:
logit_scale = mx.exp(self.logit_scale)
logits = (text_embeds @ image_embeds.T) * logit_scale
loss = clip_loss(logits)
else:
loss = None
return CLIPModelOutput(
loss=loss,
text_embeds=text_embeds,
image_embeds=image_embeds,
vision_model_output=vision_model_output,
text_model_output=text_model_output,
)
@staticmethod
def from_pretrained(path: str):
path = Path(path)
with open(path / "config.json", "r") as fid:
config = json.load(fid)
text_config = config["text_config"]
text_config = CLIPTextConfig(
num_hidden_layers=text_config["num_hidden_layers"],
hidden_size=text_config["hidden_size"],
intermediate_size=text_config["intermediate_size"],
num_attention_heads=text_config["num_attention_heads"],
max_position_embeddings=text_config["max_position_embeddings"],
vocab_size=text_config["vocab_size"],
layer_norm_eps=text_config["layer_norm_eps"],
)
vision_config = config["vision_config"]
vision_config = CLIPVisionConfig(
num_hidden_layers=vision_config["num_hidden_layers"],
hidden_size=vision_config["hidden_size"],
intermediate_size=vision_config["intermediate_size"],
num_attention_heads=vision_config["num_attention_heads"],
num_channels=3,
image_size=vision_config["image_size"],
patch_size=vision_config["patch_size"],
layer_norm_eps=vision_config["layer_norm_eps"],
)
config = CLIPConfig(
text_config=text_config,
vision_config=vision_config,
projection_dim=config["projection_dim"],
)
model = CLIPModel(config)
weight_files = glob.glob(str(path / "*.safetensors"))
if not weight_files:
logging.error(f"No safetensors found in {path}")
raise FileNotFoundError(f"No safetensors found in {path}")
weights = {}
for wf in weight_files:
weights.update(mx.load(wf))
weights = model.sanitize(weights)
model.load_weights(list(weights.items()))
return model
@staticmethod
def sanitize(weights):
sanitized_weights = {}
for k, v in weights.items():
if "position_ids" in k:
# Remove unused position_ids
continue
elif "patch_embedding.weight" in k:
# pytorch conv2d expects the weight tensor to be of shape [out_channels, in_channels, kH, KW]
# mlx conv2d expects the weight tensor to be of shape [out_channels, kH, KW, in_channels]
sanitized_weights[k] = v.transpose(0, 2, 3, 1)
else:
sanitized_weights[k] = v
return sanitized_weights