-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdemo.py
executable file
·129 lines (107 loc) · 6.21 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import string
import argparse
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
from utils import CTCLabelConverter, AttnLabelConverter, TransformerConverter
from dataset import RawDataset, AlignCollate
from model import Model
def demo(opt):
""" model configuration """
if 'CTC' in opt.Prediction:
converter = CTCLabelConverter(opt.character)
elif 'Bert' in opt.Prediction:
converter = TransformerConverter(opt.character, opt.batch_max_length)
else:
converter = AttnLabelConverter(opt.character)
opt.num_class = len(converter.character)
opt.alphabet_size = len(opt.character) + 2 # +2 for [UNK]+[EOS]
if opt.rgb:
opt.input_channel = 3
model = Model(opt)
print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel,
opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction,
opt.SequenceModeling, opt.Prediction)
model = torch.nn.DataParallel(model)
if torch.cuda.is_available():
model = model.cuda()
# load model
print('loading pretrained model from %s' % opt.saved_model)
model.load_state_dict(torch.load(opt.saved_model))
# prepare data. two demo images from https://github.com/bgshih/crnn#run-demo
AlignCollate_demo = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD)
demo_data = RawDataset(root=opt.image_folder, opt=opt) # use RawDataset
demo_loader = torch.utils.data.DataLoader(
demo_data, batch_size=opt.batch_size,
shuffle=False,
num_workers=int(opt.workers),
collate_fn=AlignCollate_demo, pin_memory=True)
# predict
model.eval()
for image_tensors, image_path_list in demo_loader:
batch_size = image_tensors.size(0)
with torch.no_grad():
image = image_tensors.cuda()
# For max length prediction
length_for_pred = torch.cuda.IntTensor([opt.batch_max_length] * batch_size)
text_for_pred = torch.cuda.LongTensor(batch_size, opt.batch_max_length + 1).fill_(0)
if 'CTC' in opt.Prediction:
preds = model(image, text_for_pred).log_softmax(2)
# Select max probabilty (greedy decoding) then decode index to character
preds_size = torch.IntTensor([preds.size(1)] * batch_size)
_, preds_index = preds.permute(1, 0, 2).max(2)
preds_index = preds_index.transpose(1, 0).contiguous().view(-1)
preds_str = converter.decode(preds_index.data, preds_size.data)
elif 'Bert' in opt.Prediction:
with torch.no_grad():
pad_mask = None
preds = model(image, pad_mask)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds[1].max(2)
length_for_pred = torch.cuda.IntTensor([preds_index.size(-1)] * batch_size)
preds_str = converter.decode(preds_index, length_for_pred)
else:
preds = model(image, text_for_pred, is_train=False)
# select max probabilty (greedy decoding) then decode index to character
_, preds_index = preds.max(2)
preds_str = converter.decode(preds_index, length_for_pred)
print('-' * 80)
print('image_path\tpredicted_labels')
print('-' * 80)
for img_name, pred in zip(image_path_list, preds_str):
if 'Attn' in opt.Prediction:
pred = pred[:pred.find('[s]')] # prune after "end of sentence" token ([s])
print(f'{img_name}\t{pred}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', default='demo_image/', help='path to image_folder which contains text images')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--batch_size', type=int, default=192, help='input batch size')
parser.add_argument('--saved_model', default='./saved_models/TPS-AsterRes-Bert-Bert_pred-Seed666/best_accuracy.pth', help="path to saved_model to evaluation")
""" Data processing """
parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length')
parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
parser.add_argument('--imgW', type=int, default=100, help='the width of the input image')
parser.add_argument('--rgb', action='store_true', help='use rgb input')
parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label')
parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode')
parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize')
""" Model Architecture """
parser.add_argument('--Transformation', type=str, default='TPS', help='Transformation stage. None|TPS')
parser.add_argument('--FeatureExtraction', type=str, default='AsterRes', help='FeatureExtraction stage. VGG|RCNN|ResNet|AsterRes')
parser.add_argument('--SequenceModeling', type=str, default='Bert', help='SequenceModeling stage. None|BiLSTM|Bert')
parser.add_argument('--Prediction', type=str, default='Bert_pred', help='Prediction stage. CTC|Attn|Bert_pred')
parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN')
parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor')
parser.add_argument('--output_channel', type=int, default=1024,
help='the number of output channel of Feature extractor')
parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state')
parser.add_argument('--position_dim', type=int, default=210, help='the length sequence out from cnn encoder')
opt = parser.parse_args()
""" vocab / character number configuration """
if opt.sensitive:
opt.character = string.printable[:-6] # same with ASTER setting (use 94 char).
cudnn.benchmark = True
cudnn.deterministic = True
opt.num_gpu = torch.cuda.device_count()
demo(opt)