-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_hybrid_flnn.py
41 lines (36 loc) · 1.96 KB
/
test_hybrid_flnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# ------------------------------------------------------------------------------------------------------%
# Created by "Thieu" at 14:47, 16/07/2021 %
# %
# Email: [email protected] %
# Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 %
# Github: https://github.com/thieu1995 %
# ------------------------------------------------------------------------------------------------------%
import multiprocessing
from time import time
from pandas import read_csv
from sklearn.model_selection import ParameterGrid
from config import Config, Exp
from model.app import mha_flnn
def setting_and_running(optimizer):
print(f"Start running: {optimizer['name']}")
for dataname, datadict in Exp.LIST_DATASETS.items():
# load dataset
series = read_csv(f'{Config.DATA_APP}/{datadict["dataname"]}.csv', usecols=datadict["columns"])
# experiment
parameters_grid = list(ParameterGrid(optimizer["param_grid"]))
for mha_paras in parameters_grid:
hybridmodel = getattr(mha_flnn, optimizer["class"])(mha_paras)
for activation in Exp.FLNN_ACTIVATIONS:
for expand in Exp.EXPANDS:
hybridmodel.experiment(optimizer, Exp.TRIAL, datadict, series, Exp.EPOCH[0], activation, expand, Exp.VERBOSE)
if __name__ == '__main__':
starttime = time()
processes = []
for optimizer in Exp.FLNN_OPTIMIZERS:
p = multiprocessing.Process(target=setting_and_running, args=(optimizer,))
processes.append(p)
p.start()
for process in processes:
process.join()
print('That took: {} seconds'.format(time() - starttime))