-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_ISLO.py
65 lines (53 loc) · 2.57 KB
/
test_ISLO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python
# ------------------------------------------------------------------------------------------------------%
# Created by "Thieu" at 16:11, 14/08/2021 %
# %
# Email: [email protected] %
# Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 %
# Github: https://github.com/thieu1995 %
# ------------------------------------------------------------------------------------------------------%
import multiprocessing
from pathlib import Path
from config import Config
from model import benchmark
from pandas import DataFrame
from time import time
from utils.IOUtil import save_results_to_csv
TRIALS = 20
PROBLEM_SIZE = 30
LB = [-100] * PROBLEM_SIZE
UB = [100] * PROBLEM_SIZE
VERBOSE = False
EPOCH = 1000
POP_SIZE = 50
LIST_FUNCTIONS = ["f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20"]
LIST_MHAS = ["ImprovedSLO2"]
def run_algorithm(name):
path_error = f"{Config.BENCHMARK_ERROR}/{name}/"
Path(path_error).mkdir(parents=True, exist_ok=True)
## Run model
for id_paras, func_name in enumerate(LIST_FUNCTIONS):
error_full = {}
error_columns = []
for id_trial in range(TRIALS):
time_start = time()
md = getattr(benchmark, name)(getattr(benchmark, func_name), LB, UB, VERBOSE, EPOCH, POP_SIZE)
_, best_fit, list_loss = md.train()
temp = f"trial_{str(id_trial)}"
error_full[temp] = list_loss
error_columns.append(temp)
time_end = time() - time_start
item = {'function': func_name, 'time': time_end, 'trial': id_trial, 'fit': best_fit}
save_results_to_csv(item, f"{PROBLEM_SIZE}D_{name}_best_fit", Config.BENCHMARK_BEST_FIT)
df = DataFrame(error_full, columns=error_columns)
df.to_csv(f"{path_error}/{PROBLEM_SIZE}D_{name}_{func_name}_error.csv", header=True, index=False)
if __name__ == '__main__':
starttime = time()
processes = []
for algorithm in LIST_MHAS:
p = multiprocessing.Process(target=run_algorithm, args=(algorithm,))
processes.append(p)
p.start()
for process in processes:
process.join()
print('That took: {} seconds'.format(time() - starttime))