-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdl_func.py
267 lines (206 loc) · 9.05 KB
/
dl_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/python
"""
Training deep learning models, imcluding TempCNNs and GRU-RNNs.
"""
import os, sys
import argparse
import numpy as np
import pandas as pd
import math
import random
import itertools
import time
import keras
from keras import layers
from keras import optimizers
from keras.regularizers import l2
from keras.layers import Input, Dense, Activation, BatchNormalization, Dropout, Flatten, Lambda, SpatialDropout1D, Concatenate
from keras.layers import Conv1D, Conv2D, AveragePooling1D, MaxPooling1D, GlobalMaxPooling1D, GlobalAveragePooling1D, GRU, Bidirectional
from keras.callbacks import Callback, ModelCheckpoint, History, EarlyStopping
from keras.models import Model, load_model
from keras.utils.np_utils import to_categorical
from keras import backend as K
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#----------------- DEEP LEARNING --------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
#-----------------------------------------------------------------------
def conv_bn(X, **conv_params):
nbunits = conv_params["nbunits"];
kernel_size = conv_params["kernel_size"];
strides = conv_params.setdefault("strides", 1)
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer", l2(1.e-6))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
Z = Conv1D(nbunits, kernel_size=kernel_size,
strides = strides, padding=padding,
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer)(X)
return BatchNormalization(axis=-1)(Z) #-- CHANNEL_AXIS (-1)
#-----------------------------------------------------------------------
def conv_bn_relu(X, **conv_params):
Znorm = conv_bn(X, **conv_params)
return Activation('relu')(Znorm)
#-----------------------------------------------------------------------
def conv_bn_relu_drop(X, **conv_params):
dropout_rate = conv_params.setdefault("dropout_rate", 0.5)
A = conv_bn_relu(X, **conv_params)
return Dropout(dropout_rate)(A)
#-----------------------------------------------------------------------
def fc_bn(X, **fc_params):
nbunits = fc_params["nbunits"];
kernel_regularizer = fc_params.setdefault("kernel_regularizer", l2(1.e-6))
kernel_initializer = fc_params.setdefault("kernel_initializer", "he_normal")
Z = Dense(nbunits, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer)(X)
return BatchNormalization(axis=-1)(Z) #-- CHANNEL_AXIS (-1)
#-----------------------------------------------------------------------
def fc_bn_relu(X, **fc_params):
Znorm = fc_bn(X, **fc_params)
return Activation('relu')(Znorm)
#-----------------------------------------------------------------------
def fc_bn_relu_drop(X, **fc_params):
dropout_rate = fc_params.setdefault("dropout_rate", 0.5)
A = fc_bn_relu(X, **fc_params)
return Dropout(dropout_rate)(A)
#-----------------------------------------------------------------------
def softmax(X, nbclasses, **params):
kernel_regularizer = params.setdefault("kernel_regularizer", l2(1.e-6))
kernel_initializer = params.setdefault("kernel_initializer", "glorot_uniform")
return Dense(nbclasses, activation='softmax',
kernel_initializer=kernel_initializer,
kernel_regularizer=kernel_regularizer)(X)
#-----------------------------------------------------------------------
def Archi_TempCNN(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
dropout_rate = 0.5
nb_conv = 3
nb_fc= 1
nbunits_conv = 64 #-- will be double
nbunits_fc = 256 #-- will be double
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_conv CONV layers
X = X_input
for add in range(nb_conv):
X = conv_bn_relu_drop(X, nbunits=nbunits_conv, kernel_size=5, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- Flatten + 1 FC layers
X = Flatten()(X)
for add in range(nb_fc):
X = fc_bn_relu_drop(X, nbunits=nbunits_fc, kernel_regularizer=l2(l2_rate), dropout_rate=dropout_rate)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3CONV64_1FC256')
#-----------------------------------------------------------------------
def Archi_GRURNNbi(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
nb_rnn = 3
nbunits_rnn = 160
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_rnn GRU
X = X_input
for add in range(nb_rnn):
X = Bidirectional(GRU(nbunits_rnn, return_sequences=True, dropout=0.5))(X)
#-- Flatten
X = Flatten()(X)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU270')
#-----------------------------------------------------------------------
def Archi_GRURNN(X, nbclasses):
#-- get the input sizes
m, L, depth = X.shape
input_shape = (L,depth)
#-- parameters of the architecture
l2_rate = 1.e-6
nb_rnn = 3
nbunits_rnn = 270
# Define the input placeholder.
X_input = Input(input_shape)
#-- nb_rnn GRU
X = X_input
for add in range(nb_rnn):
X = GRU(nbunits_rnn, return_sequences=True, dropout=0.5)(X)
#-- Flatten
X = Flatten()(X)
#-- SOFTMAX layer
out = softmax(X, nbclasses, kernel_regularizer=l2(l2_rate))
# Create model.
return Model(inputs = X_input, outputs = out, name='Archi_3GRU270')
#-----------------------------------------------------------------------
def trainTestModel(model, X_train, Y_train_onehot, X_test, Y_test_onehot, out_model_file, **train_params):
#---- variables
n_epochs = train_params.setdefault("n_epochs", 20)
batch_size = train_params.setdefault("batch_size", 32)
lr = train_params.setdefault("lr", 0.001)
beta_1 = train_params.setdefault("beta_1", 0.9)
beta_2 = train_params.setdefault("beta_2", 0.999)
decay = train_params.setdefault("decay", 0.0)
#---- optimizer
opt = optimizers.Adam(lr=lr, beta_1=beta_1, beta_2=beta_2,
epsilon=None, decay=decay)
model.compile(optimizer = opt, loss = "categorical_crossentropy",
metrics = ["accuracy"])
#---- monitoring the minimum loss
checkpoint = ModelCheckpoint(out_model_file, monitor='loss',
verbose=0, save_best_only=True, mode='min')
callback_list = [checkpoint]
start_train_time = time.time()
hist = model.fit(x = X_train, y = Y_train_onehot, epochs = n_epochs,
batch_size = batch_size, shuffle=True,
validation_data=(X_test, Y_test_onehot),
verbose=1, callbacks=callback_list)
train_time = round(time.time()-start_train_time, 2)
#-- download the best model
del model
model = load_model(out_model_file)
start_test_time = time.time()
test_loss, test_acc = model.evaluate(x=X_test, y=Y_test_onehot,
batch_size = 128, verbose=0)
test_time = round(time.time()-start_test_time, 2)
return test_acc, np.min(hist.history['loss']), model, hist.history, train_time, test_time
#-----------------------------------------------------------------------
def trainTestValModel(model, X_train, Y_train_onehot, X_val, Y_val_onehot, X_test, Y_test_onehot, out_model_file, **train_params):
#---- variables
n_epochs = train_params.setdefault("n_epochs", 20)
batch_size = train_params.setdefault("batch_size", 32)
lr = train_params.setdefault("lr", 0.001)
beta_1 = train_params.setdefault("beta_1", 0.9)
beta_2 = train_params.setdefault("beta_2", 0.999)
decay = train_params.setdefault("decay", 0.0)
#---- optimizer
opt = optimizers.Adam(lr=lr, beta_1=beta_1, beta_2=beta_2,
epsilon=None, decay=decay)
model.compile(optimizer = opt, loss = "categorical_crossentropy",
metrics = ["accuracy"])
#---- monitoring the minimum loss
checkpoint = ModelCheckpoint(out_model_file, monitor='val_loss',
verbose=0, save_best_only=True, mode='min')
early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=0, verbose=0, mode='auto')
callback_list = [checkpoint, early_stop]
start_train_time = time.time()
hist = model.fit(x = X_train, y = Y_train_onehot, epochs = n_epochs,
batch_size = batch_size, shuffle=True,
validation_data=(X_val, Y_val_onehot),
verbose=1, callbacks=callback_list)
train_time = round(time.time()-start_train_time, 2)
#-- download the best model
del model
model = load_model(out_model_file)
start_test_time = time.time()
test_loss, test_acc = model.evaluate(x=X_test, y=Y_test_onehot,
batch_size = 128, verbose=0)
test_time = round(time.time()-start_test_time, 2)
return test_acc, np.min(hist.history['val_loss']), model, hist.history, train_time, test_time
#EOF