-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmove_batch_annotations.py
156 lines (128 loc) · 6.55 KB
/
move_batch_annotations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import copy
import shutil
import argparse
from datetime import datetime
from tqdm import tqdm
import pandas as pd
from biigle.biigle import Api
import utils as biigle_utils
def get_parser():
parser = argparse.ArgumentParser(add_help=False)
# MANDATORY ARGUMENTS
mandatory_args = parser.add_argument_group('MANDATORY ARGUMENTS')
mandatory_args.add_argument('-e', '--email', required=True, type=str,
help='Email address used for BIIGLE account.')
mandatory_args.add_argument('-t', '--token', required=True, type=str,
help='BIIGLE API token. To generate one: https://biigle.de/settings/tokens')
mandatory_args.add_argument('-i', '--ifolder', required=True, type=str,
help='Input folder, filled with patches to move.')
mandatory_args.add_argument('-o', '--ofolder', required=True, type=str,
help='Output folder, where Source and Destination folders are located.')
mandatory_args.add_argument('-s', '--source', dest='source', required=True, type=str,
help='Source label.')
mandatory_args.add_argument('-d', '--destination', dest='destination', required=True, type=str,
help='Destination label.')
mandatory_args.add_argument('-l', '--label-tree-id', dest='label_tree_id', required=True, type=int,
help='Label tree ID.')
# OPTIONAL ARGUMENTS
optional_args = parser.add_argument_group('OPTIONAL ARGUMENTS')
optional_args.add_argument('-b', '--batch-size', dest='batch_size', required=False, type=int, default=100,
help='Batch size.')
optional_args.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS,
help='Shows function documentation.')
return parser
def move_annotations(email, token, input_folder, output_folder, label_tree_id, src, dest, batch_size=100):
# Init API
api = Api(email, token)
# Get all labels from label tree
label_tree_info = api.get('label-trees/{}'.format(label_tree_id)).json()['labels']
label_dict = biigle_utils.get_folders_match_tree(label_tree_info)
# Check folders exist
src_folder = os.path.join(output_folder, src)
dest_folder = os.path.join(output_folder, dest)
for f in [input_folder, src_folder]:
if not os.path.isdir(f):
print('\nFolder not found: {}'.format(f))
exit()
if not os.path.isdir(dest_folder) and dest != "NOT_VME":
if dest in label_dict:
print('\nCreating destination folder: {}'.format(dest_folder))
os.makedirs(dest_folder)
else:
print('\nUnknown destination category: {}'.format(dest))
exit()
# Log file
fname_log = os.path.join(output_folder, "logfile_"+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+".csv")
dict_log = {"annotation_id": [], "from": [], "to": [], "who": []}
# Get annotation fnames
input_fname_list = [f for f in os.listdir(input_folder) if f.endswith('.jpg')]
# Check if all annotations from input folder are coming from source folder
input_fname_list_new = []
for idx, f in enumerate(input_fname_list):
src_fname_cur = os.path.join(src_folder, f)
if not os.path.isfile(src_fname_cur):
print('\tWARNING: {} is not found in {}'.format(f, src_folder))
else:
input_fname_list_new.append(f)
print('\nFound {} annotations to move.'.format(len(input_fname_list_new)))
# Nested list
input_fname_nested = [input_fname_list_new[i:i + batch_size]
for i in range(0, len(input_fname_list_new), batch_size)]
# Move per batch
for fname_sublist in tqdm(input_fname_nested, desc="Reviewing"):
annotation_ids = [f.split('.jpg')[0] for f in fname_sublist]
annotation_infos = [api.get('image-annotations/{}'.format(annotation_id)).json()
for annotation_id in annotation_ids]
# Create batch
batch = []
for annotation_info in annotation_infos:
if dest != "NOT_VME":
annotation_info["label_id"] = label_dict[dest]['id']
annotation_info["confidence"] = 1.00
batch.append(copy.copy(annotation_info))
# Run batch
if dest != "NOT_VME":
api.post('image-annotations', json=batch)
# Cleanup
for batch_info in batch:
# Print info
image_info = api.get('images/{}'.format(batch_info['image_id'])).json()
print('\n\tChange annotation {} from {} to {} on image {} (image ID: {}).'.format(batch_info['id'],
src,
dest,
image_info['filename'],
image_info['id']))
# Detach old label
old_label_id = [ann['id'] for ann in api.get('image-annotations/{}/labels'.format(batch_info['id'])).json()
if ann["label_id"] == label_dict[src]['id']][0]
api.delete('image-annotation-labels/{}'.format(old_label_id))
# Move file
if dest != "NOT_VME":
shutil.move(os.path.join(src_folder, str(batch_info['id'])+'.jpg'),
os.path.join(dest_folder, str(batch_info['id'])+'.jpg'))
else:
os.remove(os.path.join(src_folder, str(batch_info['id'])+'.jpg'))
# fill Log file
dict_log["annotation_id"].append(batch_info['id'])
dict_log["from"].append(src)
dict_log["to"].append(dest)
dict_log["who"].append(email)
# Save Log file
df = pd.DataFrame.from_dict(dict_log)
df.to_csv(fname_log, index=False)
print('\nSaving log file in: {}'.format(fname_log))
def main():
parser = get_parser()
args = parser.parse_args()
# Run function
move_annotations(email=args.email,
token=args.token,
input_folder=args.ifolder,
output_folder=args.ofolder,
label_tree_id=args.label_tree_id,
src=args.source,
dest=args.destination,
batch_size=args.batch_size)
if __name__ == "__main__":
main()