-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_image_quality.py
260 lines (188 loc) · 9.25 KB
/
compute_image_quality.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import argparse
from tqdm import tqdm
import pandas as pd
from PIL import Image
from datetime import datetime
import numpy as np
import scipy.signal as signal
import scipy.special as special
import scipy.optimize as optimize
from skimage.transform import rescale
import collections
from itertools import chain
import pickle
from libsvm import svmutil
ACCEPTED_IMAGE_FORMAT = [".jpg", ".png", ".JPG"]
# python compute_image_quality.py -i R:\IMAS\Antarctic_Seafloor\Clean_Data_For_Permanent_Storage\AA2011\AA2011_3_colourcorrected_images_for_annotation -o iqs_aa2011
def get_parser():
parser = argparse.ArgumentParser(add_help=False)
# MANDATORY ARGUMENTS
mandatory_args = parser.add_argument_group('MANDATORY ARGUMENTS')
mandatory_args.add_argument('-i', '--input', required=True, type=str,
help='Input, either image filename or folder. If folder, all images contained in this '
'folder will be processed. Accepted formats: PNG, JPG.')
# OPTIONAL ARGUMENTS
optional_args = parser.add_argument_group('OPTIONAL ARGUMENTS')
optional_args.add_argument('-o', '--output-folder', dest='output_folder', required=False, type=str, default='.',
help='Output folder where the results are saved, in a csv file. If this folder does not '
'exist yet, it will be created.')
optional_args.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS,
help='Shows function documentation.')
return parser
def is_image(fname):
for f_format in ACCEPTED_IMAGE_FORMAT:
if fname.endswith(f_format):
return True
return False
def normalize_kernel(kernel):
return kernel / np.sum(kernel)
def gaussian_kernel2d(n, sigma):
Y, X = np.indices((n, n)) - int(n/2)
gaussian_kernel = 1 / (2 * np.pi * sigma ** 2) * np.exp(-(X ** 2 + Y ** 2) / (2 * sigma ** 2))
return normalize_kernel(gaussian_kernel)
def local_mean(image, kernel):
return signal.convolve2d(image, kernel, 'same')
def local_deviation(image, local_mean, kernel):
"Vectorized approximation of local deviation"
sigma = image ** 2
sigma = signal.convolve2d(sigma, kernel, 'same')
return np.sqrt(np.abs(local_mean ** 2 - sigma))
def calculate_mscn_coefficients(image, kernel_size=6, sigma=7 / 6):
C = 1 / 255
kernel = gaussian_kernel2d(kernel_size, sigma=sigma)
local_mean = signal.convolve2d(image, kernel, 'same')
local_var = local_deviation(image, local_mean, kernel)
return (image - local_mean) / (local_var + C)
def generalized_gaussian_dist(x, alpha, sigma):
beta = sigma * np.sqrt(special.gamma(1 / alpha) / special.gamma(3 / alpha))
coefficient = alpha / (2 * beta() * special.gamma(1 / alpha))
return coefficient * np.exp(-(np.abs(x) / beta) ** alpha)
def calculate_pair_product_coefficients(mscn_coefficients):
return collections.OrderedDict({
'mscn': mscn_coefficients,
'horizontal': mscn_coefficients[:, :-1] * mscn_coefficients[:, 1:],
'vertical': mscn_coefficients[:-1, :] * mscn_coefficients[1:, :],
'main_diagonal': mscn_coefficients[:-1, :-1] * mscn_coefficients[1:, 1:],
'secondary_diagonal': mscn_coefficients[1:, :-1] * mscn_coefficients[:-1, 1:]
})
def asymmetric_generalized_gaussian(x, nu, sigma_l, sigma_r):
def beta(sigma):
return sigma * np.sqrt(special.gamma(1 / nu) / special.gamma(3 / nu))
coefficient = nu / ((beta(sigma_l) + beta(sigma_r)) * special.gamma(1 / nu))
f = lambda x, sigma: coefficient * np.exp(-(x / beta(sigma)) ** nu)
return np.where(x < 0, f(-x, sigma_l), f(x, sigma_r))
def asymmetric_generalized_gaussian_fit(x):
def estimate_phi(alpha):
numerator = special.gamma(2 / alpha) ** 2
denominator = special.gamma(1 / alpha) * special.gamma(3 / alpha)
return numerator / denominator
def estimate_r_hat(x):
size = np.prod(x.shape)
return (np.sum(np.abs(x)) / size) ** 2 / (np.sum(x ** 2) / size)
def estimate_R_hat(r_hat, gamma):
numerator = (gamma ** 3 + 1) * (gamma + 1)
denominator = (gamma ** 2 + 1) ** 2
return r_hat * numerator / denominator
def mean_squares_sum(x, filter=lambda z: z == z):
filtered_values = x[filter(x)]
squares_sum = np.sum(filtered_values ** 2)
return squares_sum / ((filtered_values.shape))
def estimate_gamma(x):
left_squares = mean_squares_sum(x, lambda z: z < 0)
right_squares = mean_squares_sum(x, lambda z: z >= 0)
return np.sqrt(left_squares) / np.sqrt(right_squares)
def estimate_alpha(x):
r_hat = estimate_r_hat(x)
gamma = estimate_gamma(x)
R_hat = estimate_R_hat(r_hat, gamma)
solution = optimize.root(lambda z: estimate_phi(z) - R_hat, [0.2]).x
return solution[0]
def estimate_sigma(x, alpha, filter=lambda z: z < 0):
return np.sqrt(mean_squares_sum(x, filter))
def estimate_mean(alpha, sigma_l, sigma_r):
return (sigma_r - sigma_l) * constant * (special.gamma(2 / alpha) / special.gamma(1 / alpha))
alpha = estimate_alpha(x)
sigma_l = estimate_sigma(x, alpha, lambda z: z < 0)
sigma_r = estimate_sigma(x, alpha, lambda z: z >= 0)
constant = np.sqrt(special.gamma(1 / alpha) / special.gamma(3 / alpha))
mean = estimate_mean(alpha, sigma_l, sigma_r)
return alpha, mean, sigma_l, sigma_r
def calculate_brisque_features(image, kernel_size=7, sigma=7 / 6):
def calculate_features(coefficients_name, coefficients, accum=np.array([])):
alpha, mean, sigma_l, sigma_r = asymmetric_generalized_gaussian_fit(coefficients)
if coefficients_name == 'mscn':
var = (sigma_l ** 2 + sigma_r ** 2) / 2
return [alpha, var]
return [alpha, mean, sigma_l ** 2, sigma_r ** 2]
mscn_coefficients = calculate_mscn_coefficients(image, kernel_size, sigma)
coefficients = calculate_pair_product_coefficients(mscn_coefficients)
features = [calculate_features(name, coeff) for name, coeff in coefficients.items()]
flatten_features = list(chain.from_iterable(features))
return np.array(flatten_features)
def scale_features(features):
with open('brisque_model/normalize.pickle', 'rb') as handle:
scale_params = pickle.load(handle)
min_ = np.array(scale_params['min_'])
max_ = np.array(scale_params['max_'])
return -1 + (2.0 / (max_ - min_) * (features - min_))
def calculate_image_quality_score(brisque_features):
model = svmutil.svm_load_model('brisque_model/brisque_svm.txt')
#scaled_brisque_features = scale_features(brisque_features)
scaled_brisque_features = brisque_features
x, idx = svmutil.gen_svm_nodearray(
scaled_brisque_features,
isKernel=(model.param.kernel_type == svmutil.PRECOMPUTED))
nr_classifier = 1
prob_estimates = (svmutil.c_double * nr_classifier)()
return svmutil.libsvm.svm_predict_probability(model, x, prob_estimates)
def compute_image_quality(input_path, output_path):
# Get image paths
image_list = []
if is_image(input_path):
image_list.append(input_path)
else:
if os.path.isdir(input_path):
for i_fname in os.listdir(input_path):
if is_image(i_fname):
image_list.append(os.path.join(input_path, i_fname))
# Throw error if no image found
if not len(image_list):
print("No image found in: "+input_path)
print("Accepted image formats: {}".format(ACCEPTED_IMAGE_FORMAT))
exit()
else:
print("Found {} images.".format(len(image_list)))
# Create output folder if does not exist yet
if not os.path.isdir(output_path):
os.makedirs(output_path)
results_dict = {"filename": [], "image_quality_score": []}
for fname in tqdm(image_list, desc="Computing image quality score"):
# Load image as grayscale
img = np.array(Image.open(fname).convert('L'))
# Fit Coefficients to Generalized Gaussian Distributions
brisque_features = calculate_brisque_features(img, kernel_size=7, sigma=7/6)
# Resize Image and Calculate BRISQUE Features
w, h = img.shape
downscaled_image = rescale(img, scale=1/2, order=3)
downscale_brisque_features = calculate_brisque_features(downscaled_image, kernel_size=7, sigma=7 / 6)
brisque_features = np.concatenate((brisque_features, downscale_brisque_features))
# Scale Features and Feed the SVR
image_quality_score = calculate_image_quality_score(brisque_features)
# Save results
results_dict["filename"].append(os.path.split(fname)[1])
results_dict["image_quality_score"].append(image_quality_score)
# Save final results
o_fname = os.path.join(output_path, "results_"+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+".csv")
results_pd = pd.DataFrame.from_dict(results_dict).sort_values(by='image_quality_score')
results_pd.to_csv(o_fname, index=False)
print("\nFinal results saved in: {}".format(o_fname))
return o_fname
def main():
parser = get_parser()
args = parser.parse_args()
# Run function
compute_image_quality(input_path=args.input,
output_path=args.output_folder)
if __name__ == "__main__":
main()