-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmesh.h
185 lines (154 loc) · 5.46 KB
/
mesh.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#ifndef __cplusplus
#error "C++ is required"
#endif
#ifndef TINY_RENDERER_MESH_H
#define TINY_RENDERER_MESH_H
#define GLM_FORCE_RADIANS
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtx/transform.hpp>
#include <string.h>
#include <vector>
#ifndef TINYOBJLOADER_IMPLEMENTATION
#define TINYOBJLOADER_IMPLEMENTATION
#include <tiny_obj_loader.h>
#endif
#if defined(TINY_RENDERER_DX)
#include "tinydx.h"
#elif defined(TINY_RENDERER_VK)
#include "tinyvk.h"
#endif
namespace tr {
using float2 = glm::vec2;
using float3 = glm::vec3;
using float4 = glm::vec4;
using float2x2 = glm::mat2x2;
using float2x3 = glm::mat2x3;
using float2x4 = glm::mat2x4;
using float3x2 = glm::mat3x2;
using float3x3 = glm::mat3x3;
using float3x4 = glm::mat3x4;
using float4x2 = glm::mat4x2;
using float4x3 = glm::mat4x3;
using float4x4 = glm::mat4x4;
struct Vertex {
float3 position;
float3 normal;
float2 tex_coord;
};
class Mesh {
public:
Mesh() {}
~Mesh() {}
static tr_vertex_layout DefaultVertexLayout() {
tr_vertex_layout vertex_layout = {};
// Attribute count
vertex_layout.attrib_count = 3;
// Position
vertex_layout.attribs[0].semantic = tr_semantic_position;
vertex_layout.attribs[0].format = tr_format_r32g32b32_float;
vertex_layout.attribs[0].binding = 0;
vertex_layout.attribs[0].location = 0;
vertex_layout.attribs[0].offset = 0;
// Normal
vertex_layout.attribs[1].semantic = tr_semantic_normal;
vertex_layout.attribs[1].format = tr_format_r32g32b32_float;
vertex_layout.attribs[1].binding = 0;
vertex_layout.attribs[1].location = 1;
vertex_layout.attribs[1].offset = vertex_layout.attribs[0].offset + tr_util_format_stride(vertex_layout.attribs[0].format);
// Tex Coord
vertex_layout.attribs[2].semantic = tr_semantic_texcoord0;
vertex_layout.attribs[2].format = tr_format_r32g32_float;
vertex_layout.attribs[2].binding = 0;
vertex_layout.attribs[2].location = 2;
vertex_layout.attribs[2].offset = vertex_layout.attribs[1].offset + tr_util_format_stride(vertex_layout.attribs[1].format);
// Return
return vertex_layout;
}
const std::vector<uint32_t>& GetIndices() const {
return m_indices;
}
const std::vector<Vertex>& GetVertices() const {
return m_vertices;
}
uint32_t GetIndexCount() const {
uint32_t count = (uint32_t)m_indices.size();
return count;
}
uint32_t GetVertexStride() const {
uint32_t stride = (uint32_t)sizeof(Vertex);
return stride;
}
uint32_t GetVertexCount() const {
uint32_t count = (uint32_t)m_vertices.size();
return count;
}
uint32_t GetVertexDataSize() const {
uint32_t size = GetVertexStride() * GetVertexCount();
return size;
}
const Vertex* GetVertexData() const {
const Vertex* p_data = m_vertices.data();
return p_data;
}
static bool Load(const std::string& file_path, Mesh* p_mesh) {
if (p_mesh == nullptr) {
return false;
}
p_mesh->m_indices.clear();
p_mesh->m_vertices.clear();
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string warn;
std::string err;
bool triangulate = true;
bool ret = tinyobj::LoadObj(&attrib, &shapes, &materials, &warn, &err, file_path.c_str(), nullptr, triangulate);
if (!ret || shapes.empty() || attrib.vertices.empty()) {
return false;
}
size_t element_count = shapes[0].mesh.indices.size();
p_mesh->m_vertices.resize(element_count);
Vertex* p_vertex = p_mesh->m_vertices.data();
for (const auto& index : shapes[0].mesh.indices) {
// Position
size_t vertex_index = 3 * index.vertex_index;
p_vertex->position.x = attrib.vertices[vertex_index + 0];
p_vertex->position.y = attrib.vertices[vertex_index + 1];
p_vertex->position.z = attrib.vertices[vertex_index + 2];
// Normal
size_t normal_index = 3 * index.normal_index;
p_vertex->normal.x = attrib.normals.empty() ? 0.0f : attrib.normals[normal_index + 0];
p_vertex->normal.y = attrib.normals.empty() ? 0.0f : attrib.normals[normal_index + 1];
p_vertex->normal.z = attrib.normals.empty() ? 0.0f : attrib.normals[normal_index + 2];
// Tex coord
size_t tex_coord_index = 2 * index.texcoord_index;
p_vertex->tex_coord.x = attrib.texcoords.empty() ? 0.0f : attrib.texcoords[tex_coord_index + 0];
p_vertex->tex_coord.y = attrib.texcoords.empty() ? 0.0f : attrib.texcoords[tex_coord_index + 1];
// Next vertex
++p_vertex;
}
return true;
}
static bool Load(const std::string& file_path, tr_renderer* p_renderer, tr_buffer** pp_buffer, uint32_t* p_vertex_count) {
tr::Mesh mesh;
bool mesh_load_res = tr::Mesh::Load(file_path, &mesh);
if (!mesh_load_res) {
return false;
}
tr_buffer* p_buffer = nullptr;
tr_create_vertex_buffer(p_renderer, mesh.GetVertexDataSize(), true, mesh.GetVertexStride(), &p_buffer);
assert(p_buffer != nullptr);
memcpy(p_buffer->cpu_mapped_address, mesh.GetVertexData(), mesh.GetVertexDataSize());
*pp_buffer = p_buffer;
*p_vertex_count = mesh.GetVertexCount();
return true;
}
private:
std::vector<uint32_t> m_indices;
std::vector<Vertex> m_vertices;
};
} // namespace mesh
#endif // TINY_RENDERER_MESH_H