-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_diffusion.py
96 lines (68 loc) · 2.37 KB
/
train_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from functools import partial
import numpy as np
import torch
from diffusers import AutoencoderTiny
from fastprogress import progress_bar
from src.diffusion.model import (
DiTConfig,
DiT
)
from src.utils import compose
if __name__ == "__main__":
device = torch.device("cuda")
taesd: AutoencoderTiny = AutoencoderTiny.from_pretrained("madebyollin/taesd")
taesd = taesd.to(device)
""" Step 1: Encode dataset with TAESD """
train_x: torch.Tensor = compose(
lambda x: x / 255.0,
partial(torch.permute, dims=(0, 3, 1, 2)),
partial(torch.squeeze, dim=1),
torch.Tensor.float,
torch.from_numpy,
np.load
)("./datasets/3_25_24/frames.npy")
n_train = train_x.size(0)
with torch.no_grad():
train_z = []
for i in progress_bar(range(0, n_train, 5000)):
mini_batch_x = train_x[i : i + 200].to(device)
train_z += [taesd.encode(mini_batch_x).latents]
train_z = torch.concat(train_z, dim=0)
print("Finished encoding dataset. train_z.shape =", train_z.shape)
""" Step 2: Create DiT model """
config = DiTConfig(
in_channels=4,
grid_size=16,
patch_size=4,
embed_dim=768,
num_heads=12,
mlp_ratio=3,
depth=6
)
model = DiT(config)
model = model.to(device)
""" Step 3: Configure optimizers """
num_timesteps = 1000
epochs = 10
batch_size = 4
gradient_accumulation_steps = 10
optimizer = None
""" Step 4: Train loop """
for epoch in range(epochs):
for batch_idx, idx in enumerate(progress_bar(range(0, n_train, batch_size))):
batch_x = train_z[idx : idx + batch_size]
# Timesteps
t = torch.randint(0, num_timesteps, (batch_size,), device=device)
# Compute noise
noise = None
noisy_x = None
# Run prediction
pred_noise = model.forward(noisy_x, t, y = None)
loss = torch.nn.functional.mse_loss(
pred_noise,
noise
)
loss.backward()
if (batch_idx + 1) % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()