-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquestions.py
204 lines (172 loc) · 5.53 KB
/
questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import nltk
import sys
import string
import numpy as np
import os
import functools
FILE_MATCHES = 1
SENTENCE_MATCHES = 1
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python questions.py corpus")
# Calculate IDF values across files
files = load_files(sys.argv[1])
file_words = {
filename: tokenize(files[filename])
for filename in files
}
file_idfs = compute_idfs(file_words)
# Prompt user for query
query = set(tokenize(input("Query: ")))
# Determine top file matches according to TF-IDF
filenames = top_files(query, file_words, file_idfs, n=FILE_MATCHES)
# Extract sentences from top files
sentences = dict()
for filename in filenames:
for passage in files[filename].split("\n"):
for sentence in nltk.sent_tokenize(passage):
tokens = tokenize(sentence)
if tokens:
sentences[sentence] = tokens
# Compute IDF values across sentences
idfs = compute_idfs(sentences)
# Determine top sentence matches
matches = top_sentences(query, sentences, idfs, n=SENTENCE_MATCHES)
for match in matches:
print(match)
def load_files(directory):
"""
Given a directory name, return a dictionary mapping the filename of each
`.txt` file inside that directory to the file's contents as a string.
"""
files = dict()
filesnew = os.listdir(directory)
for file in filesnew:
with open(os.path.join(directory, file)) as f:
data = f.read()
files[file] = data
return files
def tokenize(document):
"""
Given a document (represented as a string), return a list of all of the
words in that document, in order.
Process document by coverting all words to lowercase, and removing any
punctuation or English stopwords.
"""
temp = nltk.word_tokenize(document)
tokens = [t.lower() for t in temp]
for token in tokens.copy():
if token in string.punctuation:
tokens.remove(token)
if token in nltk.corpus.stopwords.words("english"):
tokens.remove(token)
return tokens
def compute_idfs(documents):
"""
Given a dictionary of `documents` that maps names of documents to a list
of words, return a dictionary that maps words to their IDF values.
Any word that appears in at least one of the documents should be in the
resulting dictionary.
idf = ln(num docs / num docs w word)
"""
#setup
idfs = dict()
for doc in documents:
for word in documents[doc]:
idfs[word] = 0
numdocs = len(documents.keys())
for word in idfs.keys():
numappear = 0
for doc in documents:
if word in documents[doc]:
numappear+=1
idfs[word] += np.log(numdocs/numappear)
return idfs
def top_files(query, files, idfs, n):
"""
Given a `query` (a set of words), `files` (a dictionary mapping names of
files to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the filenames of the the `n` top
files that match the query, ranked according to tf-idf.
"""
stats = []
#go thru each file and compute tfidf
for file in files:
tfidf = 0
#for each word in file and query, add tfidf value
for word in query:
if word in idfs:
num=idfs[word]
num*=tf(files[file], word)
tfidf+=num
stats.append((file, tfidf))
#sort by tfidf (highest first)
stats = sorted(stats, key=lambda stat: -stat[1])
names = []
for name, num in stats:
names.append(name)
if len(names)==n:
break
return names
def tf(file, word):
#computes term frequency
count = 0
for w in file:
if word==w:
count+=1
return count
def top_sentences(query, sentences, idfs, n):
"""
Given a `query` (a set of words), `sentences` (a dictionary mapping
sentences to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the `n` top sentences that match
the query, ranked according to idf. If there are ties, preference should
be given to sentences that have a higher query term density.
"""
#assembling
top = []
for sentence in sentences:
mwm = matchwordmeasure(query, sentences[sentence], idfs)
qtd = querytermdensity(query, sentences[sentence])
top.append((sentence, mwm, qtd))
#sort by mwm and qtd (highest first)
top = sorted(top, key=functools.cmp_to_key(compare))
#take top n
realtop = []
for s in top:
realtop.append(s[0])
if len(realtop) == n:
break
return realtop
def compare(sentence1, sentence2):
mwm1 = sentence1[1]
mwm2 = sentence2[1]
qtd1 = sentence1[2]
qtd2 = sentence2[2]
if mwm1!=mwm2:
return mwm2-mwm1
return qtd2-qtd1
def matchwordmeasure(query, sentence, idfs):
"""
sum of IDF values for any word in the query
that also appears in the sentence
"""
s = 0
for word in query:
if word in sentence:
s+=idfs[word]
return s
def querytermdensity(query, sentence):
"""
proportion of words in the sentence
that are also words in the query
"""
totalnum = len(sentence)
numwords = 0
for word in sentence:
if word in query:
numwords+=1
return numwords/totalnum
if __name__ == "__main__":
main()