-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathforeground_background_detection.py
94 lines (73 loc) · 3.85 KB
/
foreground_background_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) 2020 Maka Autonomous Robotic Systems, Inc.
#
# This file is part of Makannotations.
#
# Makannotations is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Makannotations is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import cv2
import numpy as np
FG_BG_NONE_VAL = 0
FG_BG_FOREGROUND_VAL = 1
FG_BG_BACKGROUND_VAL = 2
FG_BG_BOX_VAL = 3
HSV_DARK_GREEN = [50, 129, 120]
HSV_LIGHT_GREEN = [100, 255, 255]
HSV_MAX_VALUE = [180, 255, 255]
def grab_cut_algo(image, grab_cut_mask, bounding_rect, refine_flag, resize_scale=3):
bg_model = np.zeros((1, 65), np.float64)
fg_model = np.zeros((1, 65), np.float64)
if refine_flag:
refine_image = cv2.resize(image, None, fx=1 / resize_scale, fy=1 / resize_scale)
refine_grab_cut_mask = cv2.resize(grab_cut_mask, None, fx=1 / resize_scale, fy=1 / resize_scale)
cv2.grabCut(refine_image, refine_grab_cut_mask, None, bg_model, fg_model, 5, cv2.GC_INIT_WITH_MASK)
grab_cut_mask = cv2.resize(refine_grab_cut_mask, grab_cut_mask.shape[1::-1])
else:
cv2.grabCut(image, grab_cut_mask, bounding_rect, bg_model, fg_model, 5, cv2.GC_INIT_WITH_RECT)
x, y, w, h = bounding_rect
grab_cut_mask = grab_cut_mask[y : y + h, x : x + w]
return np.where((grab_cut_mask == 2) | (grab_cut_mask == 0), False, True).astype("bool")
def k_means_clustering(original_image, clusters_amount, seed_mask, resize_scale=2):
# Make the image smaller to reduce k-means run time.
image = cv2.resize(original_image, None, fx=1 / resize_scale, fy=1 / resize_scale)
green_channel = image[:, :, 1].reshape(-1)
a_channel = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)[:, :, 1].reshape(-1)
vectorized = np.dstack((green_channel, a_channel))
vectorized = np.float32(vectorized.reshape((-1, 2)))
# Run k-means on vectorized image, get labels for each pixel.
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
_, labels, _ = cv2.kmeans(
vectorized, clusters_amount, None, criteria=criteria, attempts=2, flags=cv2.KMEANS_PP_CENTERS
)
# Convert labels to 2d array.
clustered_image = labels.reshape(image.shape[:2])
# Get set of labels that are present within the seed (make seed the same size as image).
seed_mask = cv2.resize(seed_mask, None, fx=1 / resize_scale, fy=1 / resize_scale)
seed_clusters = list(set(clustered_image[np.where(seed_mask == 1)]))
# Mask is those pixels that are in the clusters which are present in seed_clusters.
mask = np.isin(clustered_image, seed_clusters).astype("uint8")
return cv2.resize(mask, original_image.shape[1::-1]).astype("bool")
def image_lab_automask(rgb_img):
img_lab = cv2.cvtColor(rgb_img, cv2.COLOR_RGB2Lab)
a_LAB_channel = img_lab[:, :, 1]
_, thresh = cv2.threshold(a_LAB_channel, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return thresh == 0
def image_bright_auto_mask(rgb_img):
img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2HSV)
lower_green = np.array([HSV_DARK_GREEN])
upper_green = np.array([HSV_LIGHT_GREEN])
img = cv2.inRange(img, lower_green, upper_green)
kernel = np.ones((3, 3), "uint8")
img = cv2.erode(img, kernel, iterations=1)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
return img == 255