-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovariant_feature_map.py
128 lines (102 loc) · 5.1 KB
/
covariant_feature_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Create a new Covariant Feature Map circuit."""
import copy
from typing import Callable, Optional, Union, List, Dict, Any
import numpy as np
from qiskit import QuantumCircuit
from qiskit.circuit import ParameterVector
class CovariantFeatureMap(QuantumCircuit):
"""The Covariant Feature Map circuit.
On 3 qubits and a linear entanglement, the circuit is represented by:
.. parsed-literal::
┌──────────────┐ ░ ┌─────────────────┐┌─────────────────┐
q_0: ┤ Ry(θ_par[0]) ├─■─────░─┤ Rz(-2*x_par[1]) ├┤ Rx(-2*x_par[0]) ├
├──────────────┤ │ ░ ├─────────────────┤├─────────────────┤
q_1: ┤ Ry(θ_par[1]) ├─■──■──░─┤ Rz(-2*x_par[3]) ├┤ Rx(-2*x_par[2]) ├
├──────────────┤ │ ░ ├─────────────────┤├─────────────────┤
q_2: ┤ Ry(θ_par[2]) ├────■──░─┤ Rz(-2*x_par[5]) ├┤ Rx(-2*x_par[4]) ├
└──────────────┘ ░ └─────────────────┘└─────────────────┘
where θ_par is a vector of trainable feature map parameters and x_par is a
vector of data-bound feature map parameters.
"""
def __init__(
self,
feature_dimension: int,
entanglement: Union[str, List[List[int]], Callable[[int], List[int]]] = None,
single_training_parameter: bool = False,
name: str = "CovariantFeatureMap",
) -> None:
"""Create a new Covariant Feature Map circuit.
Args:
feature_dimension: The number of features
insert_barriers: If True, barriers are inserted around the entanglement layer
"""
if (feature_dimension % 2) != 0:
raise ValueError(
"""
Covariant feature map requires an even number of input features.
"""
)
self.feature_dimension = feature_dimension
self.entanglement = entanglement
self.single_training_parameter = single_training_parameter
self.user_parameters = None
self.input_parameters = None
num_qubits = feature_dimension / 2
super().__init__(
num_qubits,
name=name,
)
self._generate_feature_map()
@property
def settings(self) -> Dict[str, Any]:
user_parameters_list = [param for param in self.user_parameters]
input_parameters_list = [param for param in self.input_parameters]
return {
"feature_dimension": self.feature_dimension,
"entanglement": self.entanglement,
"single_training_parameter": self.single_training_parameter,
"user_parameters": user_parameters_list,
"input_parameters": input_parameters_list,
}
def _generate_feature_map(self):
# If no entanglement scheme specified, use linear entanglement
if self.entanglement is None:
self.entanglement = [
[i, i+1]
for i in range(self.num_qubits - 1)
]
# Vector of data parameters
input_params = ParameterVector("x_par", self.feature_dimension)
# Use a single parameter to rotate each qubit if sharing is desired
if self.single_training_parameter:
user_params = ParameterVector("\u03B8_par", 1)
# Create an initial rotation layer using a single Parameter
for i in range(self.num_qubits):
self.ry(user_params[0], self.qubits[i])
# Train each qubit's initial rotation individually
else:
user_params = ParameterVector("\u03B8_par", self.num_qubits)
# Create an initial rotation layer of trainable parameters
for i in range(self.num_qubits):
self.ry(user_params[i], self.qubits[i])
self.user_parameters = user_params
self.input_parameters = input_params
# Create the entanglement layer
for source, target in self.entanglement:
self.cz(self.qubits[source], self.qubits[target])
self.barrier()
# Create a circuit representation of the data group
for i in range(self.num_qubits):
self.rz(-2 * input_params[2 * i + 1], self.qubits[i])
self.rx(-2 * input_params[2 * i], self.qubits[i])