forked from ewrfcas/bert_cn_finetune
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDRCD_finetune_xlnet.py
359 lines (313 loc) · 18.4 KB
/
DRCD_finetune_xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import argparse
import sentencepiece as spm
import numpy as np
import tensorflow as tf
import os
try:
# horovod must be import before optimizer!
import horovod.tensorflow as hvd
except:
print('Please setup horovod before using multi-gpu!!!')
hvd = None
from models.xlnet_modeling import get_qa_outputs
from optimizations.tf_optimization import Optimizer
import json
import utils
from evaluate.cmrc2018_evaluate import get_eval
from evaluate.DRCD_output import write_predictions_topk
import random
from tqdm import tqdm
import collections
from preprocess.DRCD_preprocess import json2features_xlnet
def print_rank0(*args):
if mpi_rank == 0:
print(*args, flush=True)
def get_session(sess):
session = sess
while type(session).__name__ != 'Session':
session = session._sess
return session
def data_generator(data, n_batch, shuffle=False, drop_last=False):
steps_per_epoch = len(data) // n_batch
if len(data) % n_batch != 0 and not drop_last:
steps_per_epoch += 1
data_set = dict()
for k in data[0]:
data_set[k] = np.array([data_[k] for data_ in data])
index_all = np.arange(len(data))
while True:
if shuffle:
random.shuffle(index_all)
for i in range(steps_per_epoch):
yield {k: data_set[k][index_all[i * n_batch:(i + 1) * n_batch]] for k in data_set}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
tf.logging.set_verbosity(tf.logging.ERROR)
parser.add_argument('--gpu_ids', type=str, default='4,5,6,7')
# training parameter
parser.add_argument('--train_epochs', type=int, default=2)
parser.add_argument('--n_batch', type=int, default=32)
parser.add_argument('--lr', type=float, default=3e-5)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--clip_norm', type=float, default=1.0)
parser.add_argument('--loss_scale', type=float, default=2.0 ** 15)
parser.add_argument('--warmup_rate', type=float, default=0.1)
parser.add_argument('--loss_count', type=int, default=1000)
parser.add_argument('--seed', type=list, default=[123, 456, 789, 556, 977])
parser.add_argument('--float16', type=int, default=True) # only sm >= 7.0 (tensorcores)
parser.add_argument('--max_ans_length', type=int, default=50)
parser.add_argument('--log_interval', type=int, default=30) # show the average loss per 30 steps args.
parser.add_argument('--n_best', type=int, default=20)
parser.add_argument('--eval_epochs', type=float, default=0.5)
parser.add_argument('--save_best', type=bool, default=True)
parser.add_argument('--vocab_size', type=int, default=32000)
parser.add_argument('--max_seq_length', type=int, default=512)
parser.add_argument('--start_n_top', type=int, default=5)
parser.add_argument('--end_n_top', type=int, default=5)
parser.add_argument("--dropatt", type=float, default=0.1, help="Attention dropout rate.")
parser.add_argument("--clamp_len", type=int, default=-1, help="Clamp length.")
# Parameter initialization
parser.add_argument("--use_tpu", type=bool, default=False)
parser.add_argument("--init", type=str, default="normal", help="Initialization method.")
parser.add_argument("--init_std", type=float, default=0.02, help="Initialization std when init is normal.")
parser.add_argument("--init_range", type=float, default=0.1, help="Initialization std when init is uniform.")
# data dir
parser.add_argument('--spiece_model_file', type=str,
default='check_points/pretrain_models/xlnet_mid/spiece.model')
parser.add_argument('--train_dir', type=str, default='dataset/DRCD/train_features_xlnet512.json')
parser.add_argument('--dev_dir1', type=str, default='dataset/DRCD/dev_examples_xlnet512.json')
parser.add_argument('--dev_dir2', type=str, default='dataset/DRCD/dev_features_xlnet512.json')
parser.add_argument('--train_file', type=str, default='origin_data/DRCD/DRCD_training.json')
parser.add_argument('--dev_file', type=str, default='origin_data/DRCD/DRCD_dev.json')
parser.add_argument('--model_config_path', type=str,
default='check_points/pretrain_models/xlnet_mid/xlnet_config.json')
parser.add_argument('--init_restore_dir', type=str,
default='check_points/pretrain_models/xlnet_mid/xlnet_model.ckpt')
parser.add_argument('--checkpoint_dir', type=str,
default='check_points/DRCD/xlnet_mid/')
parser.add_argument('--setting_file', type=str, default='setting.txt')
parser.add_argument('--log_file', type=str, default='log.txt')
# use some global vars for convenience
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
n_gpu = len(args.gpu_ids.split(','))
if n_gpu > 1:
assert hvd
hvd.init()
mpi_size = hvd.size()
mpi_rank = hvd.local_rank()
assert mpi_size == n_gpu
training_hooks = [hvd.BroadcastGlobalVariablesHook(0)]
print_rank0('GPU NUM', n_gpu)
else:
hvd = None
mpi_size = 1
mpi_rank = 0
training_hooks = None
print('GPU NUM', n_gpu)
args.checkpoint_dir += ('/epoch{}_batch{}_lr{}_warmup{}_anslen{}_tf/'
.format(args.train_epochs, args.n_batch, args.lr, args.warmup_rate, args.max_ans_length))
args = utils.check_args(args, mpi_rank)
print_rank0('######## generating data ########')
if mpi_rank == 0:
sp_model = spm.SentencePieceProcessor()
sp_model.Load(args.spiece_model_file)
# assert args.vocab_size == len(tokenizer.vocab)
if not os.path.exists(args.train_dir):
json2features_xlnet(args.train_file, [args.train_dir.replace('_features_', '_examples_'),
args.train_dir], sp_model, is_training=True)
if not os.path.exists(args.dev_dir1) or not os.path.exists(args.dev_dir2):
json2features_xlnet(args.dev_file, [args.dev_dir1, args.dev_dir2], sp_model, is_training=False)
train_data = json.load(open(args.train_dir, 'r'))
dev_examples = json.load(open(args.dev_dir1, 'r'))
dev_data = json.load(open(args.dev_dir2, 'r'))
if mpi_rank == 0:
if os.path.exists(args.log_file):
os.remove(args.log_file)
# split_data for multi_gpu
if n_gpu > 1:
np.random.seed(np.sum(args.seed))
np.random.shuffle(train_data)
data_split_start = int(len(train_data) * (mpi_rank / mpi_size))
data_split_end = int(len(train_data) * ((mpi_rank + 1) / mpi_size))
train_data = train_data[data_split_start:data_split_end]
args.n_batch = args.n_batch // n_gpu
print('#### Hvd rank', mpi_rank, 'train from', data_split_start,
'to', data_split_end, 'Data length', len(train_data))
steps_per_epoch = len(train_data) // args.n_batch
eval_steps = int(steps_per_epoch * args.eval_epochs)
dev_steps_per_epoch = len(dev_data) // (args.n_batch * n_gpu)
if len(train_data) % args.n_batch != 0:
steps_per_epoch += 1
if len(dev_data) % (args.n_batch * n_gpu) != 0:
dev_steps_per_epoch += 1
total_steps = steps_per_epoch * args.train_epochs
warmup_iters = int(args.warmup_rate * total_steps)
print_rank0('steps per epoch:', steps_per_epoch)
print_rank0('total steps:', total_steps)
print_rank0('warmup steps:', warmup_iters)
F1s = []
EMs = []
best_f1_em = 0
with tf.device("/gpu:0"):
input_tensors = {
"unique_ids": tf.placeholder(tf.int32, [None, ], "unique_ids"),
"input_ids": tf.placeholder(tf.int32, [None, args.max_seq_length], "input_ids"),
"input_mask": tf.placeholder(tf.float16 if args.float16 else tf.float32,
[None, args.max_seq_length], "input_mask"),
"start_positions": tf.placeholder(tf.int32, shape=[None, ], name='start_positions'),
"end_positions": tf.placeholder(tf.int32, shape=[None, ], name='end_positions'),
"is_impossible": tf.placeholder(tf.int32, shape=[None, ], name='is_impossible'),
"segment_ids": tf.placeholder(tf.int32, [None, args.max_seq_length], "segment_ids"),
"cls_index": tf.placeholder(tf.int32, [None, ], "cls_index"),
"p_mask": tf.placeholder(tf.float16 if args.float16 else tf.float32, [None, args.max_seq_length], "p_mask")
}
# build the models for training and testing/validation
print_rank0('######## init model ########')
train_outputs = get_qa_outputs(args, input_tensors, is_training=True)
eval_outputs = get_qa_outputs(args, input_tensors, is_training=False)
# Compute loss
seq_length = tf.shape(input_tensors["input_ids"])[1]
def compute_loss(log_probs, positions):
one_hot_positions = tf.one_hot(positions, depth=seq_length, dtype=tf.float32)
loss = - tf.reduce_sum(one_hot_positions * log_probs, axis=-1)
loss = tf.reduce_mean(loss)
return loss
start_loss = compute_loss(tf.cast(train_outputs["start_log_probs"], tf.float32), input_tensors["start_positions"])
end_loss = compute_loss(tf.cast(train_outputs["end_log_probs"], tf.float32), input_tensors["end_positions"])
train_loss = (start_loss + end_loss) * 0.5
cls_logits = tf.cast(train_outputs["cls_logits"], tf.float32)
is_impossible = tf.cast(tf.reshape(input_tensors["is_impossible"], [-1]), tf.float32)
regression_loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=is_impossible, logits=cls_logits)
regression_loss = tf.reduce_mean(regression_loss)
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is
# comparable to start_loss and end_loss
train_loss += regression_loss * 0.5
optimization = Optimizer(loss=train_loss,
init_lr=args.lr,
num_train_steps=total_steps,
num_warmup_steps=warmup_iters,
hvd=hvd,
use_fp16=args.float16,
loss_count=args.loss_count,
clip_norm=args.clip_norm,
init_loss_scale=args.loss_scale)
if mpi_rank == 0:
saver = tf.train.Saver(var_list=tf.trainable_variables(), max_to_keep=1)
else:
saver = None
for seed_ in args.seed:
best_f1, best_em = 0, 0
if mpi_rank == 0:
with open(args.log_file, 'a') as aw:
aw.write('===================================' +
'SEED:' + str(seed_)
+ '===================================' + '\n')
print_rank0('SEED:', seed_)
# random seed
np.random.seed(seed_)
random.seed(seed_)
tf.set_random_seed(seed_)
train_gen = data_generator(train_data, args.n_batch, shuffle=True, drop_last=False)
dev_gen = data_generator(dev_data, args.n_batch * n_gpu, shuffle=False, drop_last=False)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(mpi_rank)
config.allow_soft_placement = True
config.gpu_options.allow_growth = True
utils.show_all_variables(rank=mpi_rank)
utils.init_from_checkpoint(args.init_restore_dir, rank=mpi_rank)
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_top_log_probs", "start_top_index",
"end_top_log_probs", "end_top_index", "cls_logits"])
with tf.train.MonitoredTrainingSession(checkpoint_dir=None,
hooks=training_hooks,
config=config) as sess:
old_global_steps = sess.run(optimization.global_step)
for i in range(args.train_epochs):
print_rank0('Starting epoch %d' % (i + 1))
total_loss = 0
iteration = 0
with tqdm(total=steps_per_epoch, desc='Epoch %d' % (i + 1),
disable=False if mpi_rank == 0 else True) as pbar:
while iteration < steps_per_epoch:
batch_data = next(train_gen)
feed_data = {input_tensors['input_ids']: batch_data['input_ids'],
input_tensors['input_mask']: batch_data['input_mask'],
input_tensors['segment_ids']: batch_data['segment_ids'],
input_tensors['start_positions']: batch_data['start_position'],
input_tensors['end_positions']: batch_data['end_position'],
input_tensors['is_impossible']: batch_data['is_impossible'],
input_tensors['cls_index']: batch_data['cls_index'],
input_tensors['p_mask']: batch_data['p_mask']}
loss, _, global_steps, loss_scale = sess.run(
[train_loss, optimization.train_op, optimization.global_step,
optimization.loss_scale],
feed_dict=feed_data)
if global_steps > old_global_steps:
old_global_steps = global_steps
total_loss += loss
pbar.set_postfix({'loss': '{0:1.5f}'.format(total_loss / (iteration + 1e-5))})
pbar.update(1)
iteration += 1
else:
print_rank0('NAN loss in', iteration, ', Loss scale reduce to', loss_scale)
if global_steps % eval_steps == 0 and global_steps > 1:
print_rank0('Evaluating...')
all_results = []
for i_step in tqdm(range(dev_steps_per_epoch),
disable=False if mpi_rank == 0 else True):
batch_data = next(dev_gen)
feed_data = {input_tensors['input_ids']: batch_data['input_ids'],
input_tensors['input_mask']: batch_data['input_mask'],
input_tensors['segment_ids']: batch_data['segment_ids'],
input_tensors['cls_index']: batch_data['cls_index'],
input_tensors['p_mask']: batch_data['p_mask']}
output_results = sess.run(eval_outputs, feed_dict=feed_data)
for j in range(len(batch_data['unique_id'])):
unique_id = int(batch_data["unique_id"][j])
start_top_log_probs = (
[float(x) for x in output_results["start_top_log_probs"][j]])
start_top_index = [int(x) for x in output_results["start_top_index"][j]]
end_top_log_probs = ([float(x) for x in output_results["end_top_log_probs"][j]])
end_top_index = [int(x) for x in output_results["end_top_index"][j]]
cls_logits = float(output_results["cls_logits"][j])
all_results.append(RawResult(unique_id=unique_id,
start_top_log_probs=start_top_log_probs,
start_top_index=start_top_index,
end_top_log_probs=end_top_log_probs,
end_top_index=end_top_index,
cls_logits=cls_logits))
if mpi_rank == 0:
output_prediction_file = os.path.join(args.checkpoint_dir,
'prediction_epoch' + str(i) + '.json')
output_nbest_file = os.path.join(args.checkpoint_dir, 'nbest_epoch' + str(i) + '.json')
write_predictions_topk(args, dev_examples, dev_data, all_results,
n_best_size=args.n_best, max_answer_length=args.max_ans_length,
output_prediction_file=output_prediction_file,
output_nbest_file=output_nbest_file)
tmp_result = get_eval(args.dev_file, output_prediction_file)
tmp_result['STEP'] = global_steps
print_rank0(tmp_result)
with open(args.log_file, 'a') as aw:
aw.write(json.dumps(str(tmp_result)) + '\n')
if float(tmp_result['F1']) > best_f1:
best_f1 = float(tmp_result['F1'])
if float(tmp_result['EM']) > best_em:
best_em = float(tmp_result['EM'])
if float(tmp_result['F1']) + float(tmp_result['EM']) > best_f1_em:
best_f1_em = float(tmp_result['F1']) + float(tmp_result['EM'])
scores = {'F1': float(tmp_result['F1']), 'EM': float(tmp_result['EM'])}
save_prex = "checkpoint_score"
for k in scores:
save_prex += ('_' + k + '-' + str(scores[k])[:6])
save_prex += '.ckpt'
saver.save(get_session(sess),
save_path=os.path.join(args.checkpoint_dir, save_prex))
F1s.append(best_f1)
EMs.append(best_em)
if mpi_rank == 0:
print('Mean F1:', np.mean(F1s), 'Mean EM:', np.mean(EMs))
print('Best F1:', np.max(F1s), 'Best EM:', np.max(EMs))
with open(args.log_file, 'a') as aw:
aw.write('Mean(Best) F1:{}({})\n'.format(np.mean(F1s), np.max(F1s)))
aw.write('Mean(Best) EM:{}({})\n'.format(np.mean(EMs), np.max(EMs)))