-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathREADME.html
336 lines (310 loc) · 9.77 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Revitalizing Convolutional Network for Image Restoration</title>
<style>
/* From extension vscode.github */
/*---------------------------------------------------------------------------------------------
* Copyright (c) Microsoft Corporation. All rights reserved.
* Licensed under the MIT License. See License.txt in the project root for license information.
*--------------------------------------------------------------------------------------------*/
.vscode-dark img[src$=\#gh-light-mode-only],
.vscode-light img[src$=\#gh-dark-mode-only],
.vscode-high-contrast:not(.vscode-high-contrast-light) img[src$=\#gh-light-mode-only],
.vscode-high-contrast-light img[src$=\#gh-dark-mode-only] {
display: none;
}
</style>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/markdown.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/Microsoft/vscode/extensions/markdown-language-features/media/highlight.css">
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe WPC', 'Segoe UI', system-ui, 'Ubuntu', 'Droid Sans', sans-serif;
font-size: 14px;
line-height: 1.6;
}
</style>
<style>
.task-list-item {
list-style-type: none;
}
.task-list-item-checkbox {
margin-left: -20px;
vertical-align: middle;
pointer-events: none;
}
</style>
<style>
:root {
--color-note: #0969da;
--color-tip: #1a7f37;
--color-warning: #9a6700;
--color-severe: #bc4c00;
--color-caution: #d1242f;
--color-important: #8250df;
}
</style>
<style>
@media (prefers-color-scheme: dark) {
:root {
--color-note: #2f81f7;
--color-tip: #3fb950;
--color-warning: #d29922;
--color-severe: #db6d28;
--color-caution: #f85149;
--color-important: #a371f7;
}
}
</style>
<style>
.markdown-alert {
padding: 0.5rem 1rem;
margin-bottom: 16px;
color: inherit;
border-left: .25em solid #888;
}
.markdown-alert>:first-child {
margin-top: 0
}
.markdown-alert>:last-child {
margin-bottom: 0
}
.markdown-alert .markdown-alert-title {
display: flex;
font-weight: 500;
align-items: center;
line-height: 1
}
.markdown-alert .markdown-alert-title .octicon {
margin-right: 0.5rem;
display: inline-block;
overflow: visible !important;
vertical-align: text-bottom;
fill: currentColor;
}
.markdown-alert.markdown-alert-note {
border-left-color: var(--color-note);
}
.markdown-alert.markdown-alert-note .markdown-alert-title {
color: var(--color-note);
}
.markdown-alert.markdown-alert-important {
border-left-color: var(--color-important);
}
.markdown-alert.markdown-alert-important .markdown-alert-title {
color: var(--color-important);
}
.markdown-alert.markdown-alert-warning {
border-left-color: var(--color-warning);
}
.markdown-alert.markdown-alert-warning .markdown-alert-title {
color: var(--color-warning);
}
.markdown-alert.markdown-alert-tip {
border-left-color: var(--color-tip);
}
.markdown-alert.markdown-alert-tip .markdown-alert-title {
color: var(--color-tip);
}
.markdown-alert.markdown-alert-caution {
border-left-color: var(--color-caution);
}
.markdown-alert.markdown-alert-caution .markdown-alert-title {
color: var(--color-caution);
}
</style>
</head>
<body class="vscode-body vscode-light">
<p><a href="https://paperswithcode.com/sota/image-dehazing-on-sots-indoor"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/image-dehazing-on-sots-indoor" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/image-dehazing-on-sots-outdoor"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/image-dehazing-on-sots-outdoor" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/image-dehazing-on-haze4k"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/image-dehazing-on-haze4k" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/image-dehazing-on-i-haze"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/image-dehazing-on-i-haze" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/image-dehazing-on-o-haze"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/image-dehazing-on-o-haze" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/snow-removal-on-snow100k"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/snow-removal-on-snow100k" alt="PWC"></a>
<a href="https://paperswithcode.com/sota/snow-removal-on-srrs"><img src="https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/revitalizing-convolutional-network-for-image/snow-removal-on-srrs" alt="PWC"></a></p>
<h2 id="revitalizing-convolutional-network-for-image-restoration">Revitalizing Convolutional Network for Image Restoration</h2>
<p>The official pytorch implementation of the paper <strong><a href="https://ieeexplore.ieee.org/abstract/document/10571568">Revitalizing Convolutional Network for Image Restoration
(T-PAMI'24)</a></strong></p>
<h4 id="yuning-cui-wenqi-ren-xiaochun-cao-alois-knoll">Yuning Cui, Wenqi Ren, Xiaochun Cao, Alois Knoll</h4>
<h2 id="installation">Installation</h2>
<p>The project is built with PyTorch 3.8, PyTorch 1.8.1. CUDA 10.2, cuDNN 7.6.5
For installing, follow these instructions:</p>
<pre><code>conda install pytorch=1.8.1 torchvision=0.9.1 -c pytorch
pip install tensorboard einops scikit-image pytorch_msssim opencv-python
</code></pre>
<p>Install warmup scheduler:</p>
<pre><code>cd pytorch-gradual-warmup-lr/
python setup.py install
cd ..
</code></pre>
<h2 id="training-and-evaluation">Training and Evaluation</h2>
<p>Please refer to respective directories.</p>
<h2 id="results-download">Results [Download]</h2>
<table>
<thead>
<tr>
<th>Model</th>
<th>Parameters</th>
<th>FLOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>ConvIR-S (small)</em></td>
<td>5.53M</td>
<td>42.1G</td>
</tr>
<tr>
<td><strong>ConvIR-B (base)</strong></td>
<td>8.63M</td>
<td>71.22G</td>
</tr>
<tr>
<td><ins>ConvIR-L (large)</ins></td>
<td>14.83M</td>
<td>129.34G</td>
</tr>
</tbody>
</table>
<table>
<thead>
<tr>
<th>Task</th>
<th>Dataset</th>
<th>PSNR</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Image Dehazing</strong></td>
<td>SOTS-Indoor</td>
<td><em>41.53</em>/<strong>42.72</strong></td>
<td><em>0.996</em>/<strong>0.997</strong></td>
</tr>
<tr>
<td></td>
<td>SOTS-Outdoor</td>
<td><em>37.95</em>/<strong>39.42</strong></td>
<td><em>0.994</em>/<strong>0.996</strong></td>
</tr>
<tr>
<td></td>
<td>Haze4K</td>
<td><em>33.36</em></font>/<strong>34.15</strong>/<ins>34.50</ins></td>
<td><em>0.99</em>/<strong>0.99</strong>/<ins>0.99</ins></td>
</tr>
<tr>
<td></td>
<td>Dense-Haze</td>
<td><em>17.45</em>/<strong>16.86</strong></td>
<td><em>0.648</em>/<strong>0.621</strong></td>
</tr>
<tr>
<td></td>
<td>NH-HAZE</td>
<td><em>20.65</em>/<strong>20.66</strong></td>
<td><em>0.807</em>/<strong>0.802</strong></td>
</tr>
<tr>
<td></td>
<td>O-HAZE</td>
<td><em>25.25</em>/<strong>25.36</strong></td>
<td><em>0.784</em>/<strong>0.780</strong></td>
</tr>
<tr>
<td></td>
<td>I-HAZE</td>
<td><em>21.95</em>/<strong>22.44</strong></td>
<td><em>0.888</em>/<strong>0.887</strong></td>
</tr>
<tr>
<td></td>
<td>SateHaze-1k-Thin/Moderate/Thick</td>
<td><em>25.11</em>/<em>26.79</em>/<em>22.65</em></td>
<td><em>0.978</em>/<em>0.978</em>/<em>0.950</em></td>
</tr>
<tr>
<td></td>
<td>NHR</td>
<td><em>28.85</em>/<strong>29.49</strong></td>
<td><em>0.981</em>/<strong>0.983</strong></td>
</tr>
<tr>
<td></td>
<td>GTA5</td>
<td><em>31.68</em>/<strong>31.83</strong></td>
<td><em>0.917</em>/<strong>0.921</strong></td>
</tr>
<tr>
<td><strong>Image Desnowing</strong></td>
<td>CSD</td>
<td><em>38.43</em>/<strong>39.10</strong></td>
<td><em>0.99</em>/<strong>0.99</strong></td>
</tr>
<tr>
<td></td>
<td>SRRS</td>
<td><em>32.25</em>/<strong>32.39</strong></td>
<td><em>0.98</em>/<strong>0.98</strong></td>
</tr>
<tr>
<td></td>
<td>Snow100K</td>
<td><em>33.79</em>/<strong>33.92</strong></td>
<td><em>0.95</em>/<strong>0.96</strong></td>
</tr>
<tr>
<td><strong>Image Deraining</strong></td>
<td>Test100</td>
<td><ins>31.40</u></td>
<td><ins>0.919</ins></td>
</tr>
<tr>
<td></td>
<td>Test2800</td>
<td><ins>33.73</ins></td>
<td><ins>0.937</ins></td>
</tr>
<tr>
<td><strong>Defocus Deblurring</strong></td>
<td>DPDD</td>
<td><em>26.06</em>/<strong>26.16</strong>/<ins>26.36</ins></td>
<td><em>0.810</em>/<strong>0.814</strong>/<ins>0.820</ins></td>
</tr>
<tr>
<td><strong>Motion Deblurring</strong></td>
<td>GoPro</td>
<td><ins>33.28</ins></td>
<td><ins>0.963</ins></td>
</tr>
<tr>
<td></td>
<td>RSBlur</td>
<td><ins>34.06</ins></td>
<td><ins>0.868</ins></td>
</tr>
</tbody>
</table>
<h2 id="citation">Citation</h2>
<pre><code>@article{cui2024revitalizing,
title={Revitalizing Convolutional Network for Image Restoration},
author={Cui, Yuning and Ren, Wenqi and Cao, Xiaochun and Knoll, Alois},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2024},
publisher={IEEE}
}
@inproceedings{cui2023irnext,
title={IRNeXt: Rethinking Convolutional Network Design for Image Restoration},
author={Cui, Yuning and Ren, Wenqi and Yang, Sining and Cao, Xiaochun and Knoll, Alois},
booktitle={International Conference on Machine Learning},
pages={6545--6564},
year={2023},
organization={PMLR}
}
</code></pre>
<h2 id="contact">Contact</h2>
<p>Should you have any problem, please contact Yuning Cui.</p>
</body>
</html>