-
Notifications
You must be signed in to change notification settings - Fork 80
/
train.py
executable file
·91 lines (70 loc) · 2.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Copyright (2024) Tsinghua University, Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from utils import *
from config import Config
from dist_utils import get_rank, init_distributed_mode
from models import load_model
from dataset import SALMONNDataset
from runner import Runner
def parse_args():
parser = argparse.ArgumentParser(description='train parameters')
parser.add_argument("--cfg-path", type=str, required=True, help='path to configuration file')
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
return parser.parse_args()
def setup_seeds(config):
seed = config.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
def main():
# set before init_distributed_mode() to ensure the same job_id shared across all ranks.
job_id = now()
# load config
cfg = Config(parse_args())
run_config = cfg.config.run
model_config = cfg.config.model
data_config = cfg.config.datasets
# initialize distributed training
init_distributed_mode(run_config)
setup_seeds(run_config)
setup_logger() # set after init_distributed_mode() to only log on master.
# print config
cfg.pretty_print()
# build model
model = load_model(model_config)
# build datasets
datasets = {
"train": SALMONNDataset(data_config.train_ann_path, data_config.whisper_path),
"valid": SALMONNDataset(data_config.valid_ann_path, data_config.whisper_path),
"test": SALMONNDataset(data_config.test_ann_path, data_config.whisper_path),
}
# build runner
runner = Runner(cfg, model, datasets, job_id)
# train
runner.train()
if __name__ == "__main__":
main()