diff --git a/R/data.R b/R/data.R index 53cbb439..facc8b53 100644 --- a/R/data.R +++ b/R/data.R @@ -15,7 +15,7 @@ #' m750 #' #' @source -#' - [M4 Competition Website](https://mofc.unic.ac.cy/m4/) +#' - M4 Competition Website: https://www.unic.ac.cy/iff/research/forecasting/m-competitions/m4/ #' "m750" diff --git a/R/modeltime-accuracy.R b/R/modeltime-accuracy.R index 88fc0019..e1e19b52 100644 --- a/R/modeltime-accuracy.R +++ b/R/modeltime-accuracy.R @@ -27,12 +27,12 @@ #' #' The following accuracy metrics are included by default via [default_forecast_accuracy_metric_set()]: #' -#' - MAE - Mean absolute error, [mae()] -#' - MAPE - Mean absolute percentage error, [mape()] -#' - MASE - Mean absolute scaled error, [mase()] -#' - SMAPE - Symmetric mean absolute percentage error, [smape()] -#' - RMSE - Root mean squared error, [rmse()] -#' - RSQ - R-squared, [rsq()] +#' - MAE - Mean absolute error, `mae()` +#' - MAPE - Mean absolute percentage error, `mape()` +#' - MASE - Mean absolute scaled error, `mase()` +#' - SMAPE - Symmetric mean absolute percentage error, `smape()` +#' - RMSE - Root mean squared error, `rmse()` +#' - RSQ - R-squared, `rsq()` #' #' #' diff --git a/R/modeltime-calibrate.R b/R/modeltime-calibrate.R index 233620b9..0a763f04 100644 --- a/R/modeltime-calibrate.R +++ b/R/modeltime-calibrate.R @@ -7,8 +7,8 @@ #' #' @param object A fitted model object that is either: #' 1. A modeltime table that has been created using [modeltime_table()] -#' 2. A workflow that has been fit by [fit.workflow()] or -#' 3. A parsnip model that has been fit using [fit.model_spec()] +#' 2. A workflow that has been fit by `fit.workflow()` or +#' 3. A parsnip model that has been fit using `fit.model_spec()` #' @param new_data A test data set `tibble` containing future information (timestamps and actual values). #' @param id A quoted column name containing an identifier column identifying time series that are grouped. #' @param quiet Hide errors (`TRUE`, the default), or display them as they occur? diff --git a/R/modeltime-forecast-plot.R b/R/modeltime-forecast-plot.R index 08b3afa8..efef9e5a 100644 --- a/R/modeltime-forecast-plot.R +++ b/R/modeltime-forecast-plot.R @@ -1,6 +1,6 @@ #' Interactive Forecast Visualization #' -#' This is a wrapper for [plot_time_series()] that generates an interactive (`plotly`) or static +#' This is a wrapper for `timetk::plot_time_series()` that generates an interactive (`plotly`) or static #' (`ggplot2`) plot with the forecasted data. #' #' @inheritParams timetk::plot_time_series diff --git a/R/modeltime-residuals-plot.R b/R/modeltime-residuals-plot.R index 705954fb..2e588c93 100644 --- a/R/modeltime-residuals-plot.R +++ b/R/modeltime-residuals-plot.R @@ -1,9 +1,9 @@ #' Interactive Residuals Visualization #' #' This is a wrapper for examining residuals using: -#' - Time Plot: [plot_time_series()] -#' - ACF Plot: [plot_acf_diagnostics()] -#' - Seasonality Plot: [plot_seasonal_diagnostics()] +#' - Time Plot: `timetk::plot_time_series()` +#' - ACF Plot: `timetk::plot_acf_diagnostics()` +#' - Seasonality Plot: `timetk::plot_seasonal_diagnostics()` #' #' #' @inheritParams timetk::plot_time_series @@ -13,9 +13,9 @@ #' Can save space with long model descriptions. #' @param .legend_max_width Numeric. The width of truncation to apply to the legend text. #' @param ... Additional arguments passed to: -#' - Time Plot: [plot_time_series()] -#' - ACF Plot: [plot_acf_diagnostics()] -#' - Seasonality Plot: [plot_seasonal_diagnostics()] +#' - Time Plot: `timetk::plot_time_series()` +#' - ACF Plot: `timetk::plot_acf_diagnostics()` +#' - Seasonality Plot: `timetk::plot_seasonal_diagnostics()` #' #' @return A static `ggplot2` plot or an interactive `plotly` plot containing residuals vs time #' diff --git a/R/parsnip-adam.R b/R/parsnip-adam.R index 862cc320..f2677e53 100644 --- a/R/parsnip-adam.R +++ b/R/parsnip-adam.R @@ -165,7 +165,7 @@ #' #' Note that date or date-time class values are excluded from `xreg`. #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examplesIf rlang::is_installed("smooth") #' diff --git a/R/parsnip-arima_boost.R b/R/parsnip-arima_boost.R index eff05848..1419d344 100644 --- a/R/parsnip-arima_boost.R +++ b/R/parsnip-arima_boost.R @@ -193,7 +193,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-arima_reg.R b/R/parsnip-arima_reg.R index 6dec2e45..e126373a 100644 --- a/R/parsnip-arima_reg.R +++ b/R/parsnip-arima_reg.R @@ -162,7 +162,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-exp_smoothing.R b/R/parsnip-exp_smoothing.R index 4d71dd75..31a8bc33 100644 --- a/R/parsnip-exp_smoothing.R +++ b/R/parsnip-exp_smoothing.R @@ -186,7 +186,7 @@ #' Note that date or date-time class values are excluded from `xreg`. #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examplesIf rlang::is_installed("smooth") #' library(dplyr) diff --git a/R/parsnip-naive_reg.R b/R/parsnip-naive_reg.R index c5dea5a4..b4a5c0b1 100644 --- a/R/parsnip-naive_reg.R +++ b/R/parsnip-naive_reg.R @@ -93,7 +93,7 @@ #' These models are univariate. No xregs are used in the modeling process. #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-nnetar_reg.R b/R/parsnip-nnetar_reg.R index 6691125d..a437c60f 100644 --- a/R/parsnip-nnetar_reg.R +++ b/R/parsnip-nnetar_reg.R @@ -126,7 +126,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-prophet_boost.R b/R/parsnip-prophet_boost.R index 0064b746..70e88c41 100644 --- a/R/parsnip-prophet_boost.R +++ b/R/parsnip-prophet_boost.R @@ -191,7 +191,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-prophet_reg.R b/R/parsnip-prophet_reg.R index 7512cb20..0d21add9 100644 --- a/R/parsnip-prophet_reg.R +++ b/R/parsnip-prophet_reg.R @@ -175,7 +175,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-seasonal_reg.R b/R/parsnip-seasonal_reg.R index 3e4c8b47..2a4a23f8 100644 --- a/R/parsnip-seasonal_reg.R +++ b/R/parsnip-seasonal_reg.R @@ -133,7 +133,7 @@ #' #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/parsnip-temporal_hierarchy.R b/R/parsnip-temporal_hierarchy.R index 48b5a175..1c5ddbf1 100644 --- a/R/parsnip-temporal_hierarchy.R +++ b/R/parsnip-temporal_hierarchy.R @@ -96,7 +96,7 @@ #' This model is not set up for use with exogenous regressors. #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examplesIf rlang::is_installed("thief") #' library(dplyr) diff --git a/R/parsnip-window_reg.R b/R/parsnip-window_reg.R index b8012d1d..a2227b0e 100644 --- a/R/parsnip-window_reg.R +++ b/R/parsnip-window_reg.R @@ -103,7 +103,7 @@ #' These models are univariate. No xregs are used in the modeling process. #' #' -#' @seealso [fit.model_spec()], [set_engine()] +#' @seealso `fit.model_spec()`, `set_engine()` #' #' @examples #' library(dplyr) diff --git a/R/yardstick-metric-sets.R b/R/yardstick-metric-sets.R index 4ec7959c..7e26a2fc 100644 --- a/R/yardstick-metric-sets.R +++ b/R/yardstick-metric-sets.R @@ -3,7 +3,7 @@ #' Forecast Accuracy Metrics Sets #' #' -#' This is a wrapper for [metric_set()] with several common forecast / regression +#' This is a wrapper for `metric_set()` with several common forecast / regression #' accuracy metrics included. These are the default time series accuracy #' metrics used with [modeltime_accuracy()]. #' @@ -16,12 +16,12 @@ #' The primary purpose is to use the default accuracy metrics to calculate the following #' forecast accuracy metrics using [modeltime_accuracy()]: #' -#' - MAE - Mean absolute error, [mae()] -#' - MAPE - Mean absolute percentage error, [mape()] -#' - MASE - Mean absolute scaled error, [mase()] -#' - SMAPE - Symmetric mean absolute percentage error, [smape()] -#' - RMSE - Root mean squared error, [rmse()] -#' - RSQ - R-squared, [rsq()] +#' - MAE - Mean absolute error, `mae()` +#' - MAPE - Mean absolute percentage error, `mape()` +#' - MASE - Mean absolute scaled error, `mase()` +#' - SMAPE - Symmetric mean absolute percentage error, `smape()` +#' - RMSE - Root mean squared error, `rmse()` +#' - RSQ - R-squared, `rsq()` #' #' Adding additional metrics is possible via `...`. #' diff --git a/man/adam_reg.Rd b/man/adam_reg.Rd index 2e326ff5..48b0b32a 100644 --- a/man/adam_reg.Rd +++ b/man/adam_reg.Rd @@ -288,5 +288,5 @@ model_fit \dontshow{\}) # examplesIf} } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/arima_boost.Rd b/man/arima_boost.Rd index 8f90b74c..f51d4a6d 100644 --- a/man/arima_boost.Rd +++ b/man/arima_boost.Rd @@ -304,5 +304,5 @@ model_fit_boosted } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/arima_reg.Rd b/man/arima_reg.Rd index c51bdb21..fda10d79 100644 --- a/man/arima_reg.Rd +++ b/man/arima_reg.Rd @@ -248,5 +248,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/exp_smoothing.Rd b/man/exp_smoothing.Rd index 9c7668dd..342da671 100644 --- a/man/exp_smoothing.Rd +++ b/man/exp_smoothing.Rd @@ -336,5 +336,5 @@ model_fit \dontshow{\}) # examplesIf} } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/m750.Rd b/man/m750.Rd index ded136af..52844b6d 100644 --- a/man/m750.Rd +++ b/man/m750.Rd @@ -14,7 +14,7 @@ A \code{tibble} with 306 rows and 3 variables: } \source{ \itemize{ -\item \href{https://mofc.unic.ac.cy/m4/}{M4 Competition Website} +\item M4 Competition Website: https://www.unic.ac.cy/iff/research/forecasting/m-competitions/m4/ } } \usage{ diff --git a/man/metric_sets.Rd b/man/metric_sets.Rd index a1b12756..ec4c3e02 100644 --- a/man/metric_sets.Rd +++ b/man/metric_sets.Rd @@ -14,7 +14,7 @@ extended_forecast_accuracy_metric_set(...) \item{...}{Add additional \code{yardstick} metrics} } \description{ -This is a wrapper for \code{\link[=metric_set]{metric_set()}} with several common forecast / regression +This is a wrapper for \code{metric_set()} with several common forecast / regression accuracy metrics included. These are the default time series accuracy metrics used with \code{\link[=modeltime_accuracy]{modeltime_accuracy()}}. } @@ -22,12 +22,12 @@ metrics used with \code{\link[=modeltime_accuracy]{modeltime_accuracy()}}. The primary purpose is to use the default accuracy metrics to calculate the following forecast accuracy metrics using \code{\link[=modeltime_accuracy]{modeltime_accuracy()}}: \itemize{ -\item MAE - Mean absolute error, \code{\link[=mae]{mae()}} -\item MAPE - Mean absolute percentage error, \code{\link[=mape]{mape()}} -\item MASE - Mean absolute scaled error, \code{\link[=mase]{mase()}} -\item SMAPE - Symmetric mean absolute percentage error, \code{\link[=smape]{smape()}} -\item RMSE - Root mean squared error, \code{\link[=rmse]{rmse()}} -\item RSQ - R-squared, \code{\link[=rsq]{rsq()}} +\item MAE - Mean absolute error, \code{mae()} +\item MAPE - Mean absolute percentage error, \code{mape()} +\item MASE - Mean absolute scaled error, \code{mase()} +\item SMAPE - Symmetric mean absolute percentage error, \code{smape()} +\item RMSE - Root mean squared error, \code{rmse()} +\item RSQ - R-squared, \code{rsq()} } Adding additional metrics is possible via \code{...}. diff --git a/man/modeltime_accuracy.Rd b/man/modeltime_accuracy.Rd index e369f01c..531356aa 100644 --- a/man/modeltime_accuracy.Rd +++ b/man/modeltime_accuracy.Rd @@ -43,12 +43,12 @@ calculations from a fitted \code{workflow} (trained workflow) or \code{model_fit \details{ The following accuracy metrics are included by default via \code{\link[=default_forecast_accuracy_metric_set]{default_forecast_accuracy_metric_set()}}: \itemize{ -\item MAE - Mean absolute error, \code{\link[=mae]{mae()}} -\item MAPE - Mean absolute percentage error, \code{\link[=mape]{mape()}} -\item MASE - Mean absolute scaled error, \code{\link[=mase]{mase()}} -\item SMAPE - Symmetric mean absolute percentage error, \code{\link[=smape]{smape()}} -\item RMSE - Root mean squared error, \code{\link[=rmse]{rmse()}} -\item RSQ - R-squared, \code{\link[=rsq]{rsq()}} +\item MAE - Mean absolute error, \code{mae()} +\item MAPE - Mean absolute percentage error, \code{mape()} +\item MASE - Mean absolute scaled error, \code{mase()} +\item SMAPE - Symmetric mean absolute percentage error, \code{smape()} +\item RMSE - Root mean squared error, \code{rmse()} +\item RSQ - R-squared, \code{rsq()} } } \examples{ diff --git a/man/modeltime_calibrate.Rd b/man/modeltime_calibrate.Rd index 1b4d0f60..07daad35 100644 --- a/man/modeltime_calibrate.Rd +++ b/man/modeltime_calibrate.Rd @@ -10,8 +10,8 @@ modeltime_calibrate(object, new_data, id = NULL, quiet = TRUE, ...) \item{object}{A fitted model object that is either: \enumerate{ \item A modeltime table that has been created using \code{\link[=modeltime_table]{modeltime_table()}} -\item A workflow that has been fit by \code{\link[=fit.workflow]{fit.workflow()}} or -\item A parsnip model that has been fit using \code{\link[=fit.model_spec]{fit.model_spec()}} +\item A workflow that has been fit by \code{fit.workflow()} or +\item A parsnip model that has been fit using \code{fit.model_spec()} }} \item{new_data}{A test data set \code{tibble} containing future information (timestamps and actual values).} diff --git a/man/naive_reg.Rd b/man/naive_reg.Rd index 70ba6349..43f617fb 100644 --- a/man/naive_reg.Rd +++ b/man/naive_reg.Rd @@ -148,5 +148,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/nnetar_reg.Rd b/man/nnetar_reg.Rd index 6b3c3cc4..606bdfb6 100644 --- a/man/nnetar_reg.Rd +++ b/man/nnetar_reg.Rd @@ -191,5 +191,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/plot_modeltime_forecast.Rd b/man/plot_modeltime_forecast.Rd index 84d3e19b..14fc26ed 100644 --- a/man/plot_modeltime_forecast.Rd +++ b/man/plot_modeltime_forecast.Rd @@ -80,7 +80,7 @@ The only parameters that cannot be passed are: A static \code{ggplot2} plot or an interactive \code{plotly} plot containing a forecast } \description{ -This is a wrapper for \code{\link[=plot_time_series]{plot_time_series()}} that generates an interactive (\code{plotly}) or static +This is a wrapper for \code{timetk::plot_time_series()} that generates an interactive (\code{plotly}) or static (\code{ggplot2}) plot with the forecasted data. } \examples{ diff --git a/man/plot_modeltime_residuals.Rd b/man/plot_modeltime_residuals.Rd index d40adad9..9b11ae23 100644 --- a/man/plot_modeltime_residuals.Rd +++ b/man/plot_modeltime_residuals.Rd @@ -43,9 +43,9 @@ Can save space with long model descriptions.} \item{...}{Additional arguments passed to: \itemize{ -\item Time Plot: \code{\link[=plot_time_series]{plot_time_series()}} -\item ACF Plot: \code{\link[=plot_acf_diagnostics]{plot_acf_diagnostics()}} -\item Seasonality Plot: \code{\link[=plot_seasonal_diagnostics]{plot_seasonal_diagnostics()}} +\item Time Plot: \code{timetk::plot_time_series()} +\item ACF Plot: \code{timetk::plot_acf_diagnostics()} +\item Seasonality Plot: \code{timetk::plot_seasonal_diagnostics()} }} } \value{ @@ -54,9 +54,9 @@ A static \code{ggplot2} plot or an interactive \code{plotly} plot containing res \description{ This is a wrapper for examining residuals using: \itemize{ -\item Time Plot: \code{\link[=plot_time_series]{plot_time_series()}} -\item ACF Plot: \code{\link[=plot_acf_diagnostics]{plot_acf_diagnostics()}} -\item Seasonality Plot: \code{\link[=plot_seasonal_diagnostics]{plot_seasonal_diagnostics()}} +\item Time Plot: \code{timetk::plot_time_series()} +\item ACF Plot: \code{timetk::plot_acf_diagnostics()} +\item Seasonality Plot: \code{timetk::plot_seasonal_diagnostics()} } } \examples{ diff --git a/man/prophet_boost.Rd b/man/prophet_boost.Rd index 634441ec..87c399b0 100644 --- a/man/prophet_boost.Rd +++ b/man/prophet_boost.Rd @@ -324,5 +324,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/prophet_reg.Rd b/man/prophet_reg.Rd index 77ca212f..740e4d4d 100644 --- a/man/prophet_reg.Rd +++ b/man/prophet_reg.Rd @@ -248,5 +248,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/seasonal_reg.Rd b/man/seasonal_reg.Rd index 95e40e4e..d9d440f3 100644 --- a/man/seasonal_reg.Rd +++ b/man/seasonal_reg.Rd @@ -192,5 +192,5 @@ model_fit } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/temporal_hierarchy.Rd b/man/temporal_hierarchy.Rd index 9f699216..c94b870d 100644 --- a/man/temporal_hierarchy.Rd +++ b/man/temporal_hierarchy.Rd @@ -146,5 +146,5 @@ model_fit } } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} } diff --git a/man/window_reg.Rd b/man/window_reg.Rd index 8bb83ed3..93c7b6ce 100644 --- a/man/window_reg.Rd +++ b/man/window_reg.Rd @@ -205,5 +205,5 @@ predict(model_fit, testing(splits)) } \seealso{ -\code{\link[=fit.model_spec]{fit.model_spec()}}, \code{\link[=set_engine]{set_engine()}} +\code{fit.model_spec()}, \code{set_engine()} }