-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathutils.py
52 lines (45 loc) · 1.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# -*- coding: utf-8 -*-
import math
import pandas as pd
from sklearn.metrics import log_loss, cohen_kappa_score, accuracy_score, confusion_matrix, hinge_loss, classification_report
from pandas_ml import ConfusionMatrix
from datetime import datetime
from sklearn.metrics import roc_auc_score
import settings
# split dataset (train and test) in 2 pieces.
# start piece to train, end piece to test.
def split_df(dframe):
test = dframe.tail(settings.NTESTS)
train = dframe[:-settings.NTESTS]
return train, test
# Split dataset (train and test)
# splitea 1 de cada 4 de forma salpicada
def split_df2(dframe):
trainfilter = [False if i%4 == 0 else True for i in range(dframe.shape[0])]
testfilter = [True if i%4 == 0 else False for i in range(dframe.shape[0])]
return dframe[trainfilter], dframe[testfilter]
# drop rows with "Nans" values
def dropna(df):
df = df[df < math.exp(709)] # big number
df = df[df != 0.0]
df = df.dropna()
return df
# show metrics
def metrics(y_true, y_pred, y_pred_proba=False):
target_names = ['KEEP', 'UP', 'DOWN']
if y_pred_proba is not False:
print('Cross Entropy: {}'.format(log_loss(y_true, y_pred_proba)))
print('Accuracy: {}'.format(accuracy_score(y_true, y_pred)))
print('Coefficient Kappa: {}'.format(cohen_kappa_score(y_true, y_pred)))
print('Classification Report:')
print(classification_report(y_true.values, y_pred, target_names=target_names))
print("Confussion Matrix:")
print(confusion_matrix(y_true, y_pred))
# show metrics
def metrics2(y_true, y_pred):
print('Accuracy: {}'.format(accuracy_score(y_true, y_pred)))
print('Coefficient Kappa: {}'.format(cohen_kappa_score(y_true, y_pred)))
print("Confussion Matrix:")
print(confusion_matrix(y_true, y_pred))
def timestamptodate(timestamp):
return datetime.fromtimestamp(int(timestamp)).strftime('%Y-%m-%d %H:%M:%S')