-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpos_mut_predict.py
176 lines (164 loc) · 6.18 KB
/
pos_mut_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import sys
import copy
import argparse
import numpy as np
import pandas as pd
from tqdm import tqdm
parser = argparse.ArgumentParser(description='predict rm position or mutation.')
parser.add_argument('-data_file', type=str,default='./test_data_to_predict.csv',
dest="ifile",help='CSV file with the data to predict. Position prediction 611 columns, mutation prediction 803 columns')
parser.add_argument('-output_dir', type=str,default='./',
dest="output_dir",help='Directory where to export the predictions.')
parser.add_argument('-models_dir', type=str,default='./pos_mut_models/',
dest="models_dir",help='directory where the models mut and pos are stored.')
parser.add_argument('-batch_size', type=int,default=32,dest="batch_size",help='32')
parser.add_argument('-th', type=str,default="10",dest="th",help='RM threshold to predict')
parser.add_argument('-prediction_type', type=str,default="pos",dest="pos_mut",help='Prediction type. position or mutation.')
parser.add_argument('-file_separator', type=str,default=",",dest="sep",help='Character used as separation in the csv file')
parser.add_argument('-first_column_is_index', type=int,default=0,dest="index_first_col",help='set 1 if the first column is the index')
args = parser.parse_args()
def load_model(ij,ih,compile=False,learning_rate=0.01):
"""
ij: input json model file
ih: input h5 model file
"""
from keras.models import model_from_json
with open(ij, 'r') as jf:
loaded_model_json = jf.read()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights(ih)
if compile==True:
from keras.optimizers import Adam,Adadelta
optimizer = Adam(learning_rate,beta_1=0.9, beta_2=0.999, epsilon=1e-07)
loaded_model.compile(optimizer=optimizer,loss="categorical_crossentropy")
return loaded_model
def load_model_file(load_model_file):
model = None
if len(load_model_file)>0:
load_model_file = load_model_file
load_model_file = load_model_file.replace(".h5","").replace(".json","")
ih = load_model_file+".h5"
ij = load_model_file+".json"
if os.path.isfile(ih) and os.path.isfile(ij):
print("Loading model.")
load_default_model = False
model = load_model(ij,ih,compile=True,learning_rate=0.01)
else:
print("Model not found. Exit.",load_model_file)
return model
class ModelPath:
def __init__(self,main_dir):
md = main_dir
if md[-1]!="/":
md+="/"
self.pos_d = md+"pos_pred_1_5_10_15/"
self.mut_d = md+"mut_pred_5_10_15/"
self.pos_model_paths={}
self.mut_model_paths={}
def search_models(self):
ths = "1 5 10 15".split(" ")
self.pos_model_paths = self.search_model_paths(self.pos_d,ths)
ths = "5 10 15".split(" ")
self.mut_model_paths = self.search_model_paths(self.mut_d,ths)
def search_model_paths(self,idir,ths):
#pos
od = {}
for th in ths:
d = f"{idir}th{th}/"
if os.path.isdir(d):
h5_and_json_present = 0
for f in os.listdir(d):
if f.endswith(".h5"):
h5_and_json_present+=1
p = f[:-3]
if f.endswith(".json"):
p = f[:-5]
h5_and_json_present+=1
if h5_and_json_present==2:
f = d+p
od[th]=f
else:
od[th]=""
else:
od[th]=""
return od.copy()
def search_model_file(models_dir="./",pred_pos_or_mut = "mut",th="1"):
pred_options = "position pos mut mutation".split(" ")
if pred_pos_or_mut not in pred_options:
print("Invalid prediction option, select between:",pred_options)
return None
if not os.path.isdir(models_dir):
print(models_dir,"Is not a directory or does not exist")
return None
mp = ModelPath(models_dir)
mp.search_models()
if pred_pos_or_mut in pred_options[:2]:
model_path = mp.pos_model_paths.get(th,"")
else:
model_path = mp.mut_model_paths.get(th,"")
if len(model_path)==0:
print("Invalid prediction threshold",th,"or model directory not present.")
return None
print("Loading model",model_path)
model = load_model_file(model_path)
return model
def collect_summary(i):
global model_print
model_print+=f"{i}\n"
def load_data(iargs,imodel):
if not os.path.isfile(iargs.ifile):
print(ifile,"does not exist")
return None
index_col = None
if bool(iargs.index_first_col):
index_col=0
dfx = pd.read_csv(iargs.ifile,sep=iargs.sep,index_col=index_col)
data_index = dfx.index
X = dfx.values
xs = X.shape
if len(xs)==1:
X = np.expand_dims(X,0)
xs = X.shape
required_cols = np.array(imodel.input.shape)[-1]
if xs[-1]!=required_cols:
msg = f"Model require input of {required_cols}. But {xs[-1]} rows were passed from file {iargs.ifile}"
print(msg)
return None
#
total_rows = xs[0]
batches = total_rows//iargs.batch_size
o = []
print("Prediction started")
for batch in tqdm(range(batches+1)):
sb = batch*iargs.batch_size
eb = sb + iargs.batch_size
if sb<total_rows:
xb = X[sb:eb,:]
px = imodel.predict(xb)
o.append(px)
px = np.vstack(o)
ppx = np.expand_dims(px.argmax(1),-1)
cols = [ f"{iargs.th}_{_}" for _ in "prob_0 prob_1 y_pred".split(" ")]
d = np.hstack([px,ppx])
odf = pd.DataFrame(data=d,columns=cols,index=data_index).copy().round(3)
#
od = args.output_dir
#
if od[-1]!="/":
od+="/"
#
os.makedirs(od,exist_ok=True)
f = iargs.ifile.split("/")[-1]
of = f"{od}{f}_prediction_{iargs.pos_mut}_th{iargs.th}.csv"
odf.to_csv(of,index=bool(iargs.index_first_col))
print("Prediction saved in ",of)
return "complete"
def main():
modelx = search_model_file(models_dir=args.models_dir,pred_pos_or_mut = args.pos_mut,th=args.th)
if type(modelx)==type(None):
sys.exit(1)
load_data(args,modelx)
if __name__ == '__main__':
main()