-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_recipe.py
executable file
·200 lines (143 loc) · 5.93 KB
/
generate_recipe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/python3
from facial_recipe import FacialRecipe
from facial_video import FacialVideo
import argparse
import magic
import os
def process_one_video(input_video_path, min_duration = 30.0, out_duration = 0.0):
start_frame = 0
end_frame = 0
width_diff = 0
best_found = False
ret = False
print('Process video:')
print(' input video path: %s' % (input_video_path))
print(' min_duration: %s' % (min_duration))
print(' out_duration: %s' % (out_duration))
fv = FacialVideo(input_video_path)
if fv.init() == False:
print(' fail to init engine')
return ret, (start_frame, end_frame, width_diff)
print('Statistic data:')
ret = fv.update_statistic_data(1, fv.frame_count)
if ret == False:
print(' fail')
return ret, (start_frame, end_frame, width_diff)
ear_min = fv.get_eye_aspect_ratio(fv.MIN)
ear_avg = fv.get_eye_aspect_ratio(fv.AVG)
ear_max = fv.get_eye_aspect_ratio(fv.MAX)
ew_min = fv.get_eye_width(fv.MIN)
ew_avg = fv.get_eye_width(fv.AVG)
ew_max = fv.get_eye_width(fv.MAX)
print(' eye aspect ratio(left): min %.3f, avg %.3f, max %.3f' % (ear_min[fv.LEFT_EYE], ear_avg[fv.LEFT_EYE], ear_max[fv.LEFT_EYE]))
print(' eye aspect ratio(right): min %.3f, avg %.3f, max %.3f' % (ear_min[fv.RIGHT_EYE], ear_avg[fv.RIGHT_EYE], ear_max[fv.RIGHT_EYE]))
print(' eye width(left): min %.3f, avg %.3f, max %.3f' % (ew_min[fv.LEFT_EYE], ew_avg[fv.LEFT_EYE], ew_max[fv.LEFT_EYE]))
print(' eye width(right): min %.3f, avg %.3f, max %.3f' % (ew_min[fv.RIGHT_EYE], ew_avg[fv.RIGHT_EYE], ew_max[fv.RIGHT_EYE]))
print('Continuous frames:')
segments = fv.find_continuous_frames(min_duration * fv.fps)
if len(segments) == 0:
print(' none')
return ret, (start_frame, end_frame, width_diff)
for segment in segments:
print(' segment: start: %d (%.3f), end: %d (%.3f)' % (segment[0], segment[0] / fv.fps, segment[1], segment[1] / fv.fps))
print('Best fit for each segment:')
for n in range(1, 50):
for segment in segments:
frames = fv.find_front_face_frames(segment[0], segment[1], n, min_duration * fv.fps)
# try next segment
if len(frames) == 0:
continue
for frame in frames:
print(' eye width diff(%%): %d, start: %d (%.3f), end: %d (%.3f)' % (n, frame[0], frame[0] / fv.fps, frame[1], frame[1] / fv.fps))
if best_found == False:
best_found = True
start_frame = frame[0]
if out_duration == 0.0:
end_frame = frame[1]
else:
end_frame = int(frame[0] + (out_duration * fv.fps) - 1)
width_diff = n
segments.remove(segment)
if best_found == False:
print(' none')
else:
ret = True
return ret, (start_frame, end_frame, width_diff)
def process_training_csv(csv_path, min_duration, overwrite, use_all):
_, filename = os.path.split(csv_path)
print('Process training csv: %s' % (filename))
print(' overwrite: %s' % (str(overwrite)))
print(' use_all: %s' % (str(use_all)))
fr = FacialRecipe(csv_path)
if fr.init() == False:
print(' fail to init recipe')
return False
while fr.read_next() != False:
if fr.get_start_frame() != 0 and overwrite == False:
continue
file_path = fr.get_file_path()
if min_duration == 0.0:
min_duration = fr.get_duration()
else:
fr.set_duration(min_duration)
out_duration = min_duration
if use_all != False:
out_duration = 0.0
ret, (start_frame, end_frame, width_diff) = process_one_video(file_path, min_duration, out_duration)
if ret == False:
start_frame = 0
end_frame = 0
width_diff = 0
fr.set_start_frame(start_frame)
fr.set_end_frame(end_frame)
fr.set_width_diff(width_diff)
# reset the data field
fr.reset_data_fields()
print(' success')
return True
def main():
min_duration = 0.0
overwrite = False
use_all = False
# parse argument
parser = argparse.ArgumentParser()
parser.add_argument('input_path', help = 'path to a video file or a training recipe file')
parser.add_argument('-d', '--min_duration', help = 'minimum duration (sec)')
parser.add_argument("-o", "--overwrite", action = "count", default = 0, help = 'overwrite the recipe')
parser.add_argument("-a", "--use_all", action = "count", default = 0, help = 'use all available frames')
args = parser.parse_args()
input_path = args.input_path
if args.min_duration != None:
min_duration = float(args.min_duration)
if args.overwrite != 0:
overwrite = True
if args.use_all != 0:
use_all = True
print('User input:')
print(' input path: %s' % (input_path))
print(' minimum duration: %s' % (str(min_duration)))
print(' overwrite: %s' % (str(overwrite)))
print(' use all: %s' % (str(use_all)))
_, ext = os.path.splitext(input_path)
if ext == '.csv':
if args.min_duration != None:
print(' ignore min_duration')
# could be a training recipe
ret = process_training_csv(input_path, min_duration, overwrite, use_all)
elif os.path.isfile(input_path) != False:
mime = magic.Magic(mime=True)
file_mine = mime.from_file(input_path)
if file_mine.find('video') == -1:
print(' not a video file')
return False
if args.min_duration == None:
min_duration = 30.0
out_duration = min_duration
if use_all != False:
out_duration = 0.0
ret, _ = process_one_video(input_path, min_duration, out_duration)
else:
print('Unrecognized path')
return
if __name__ == '__main__':
main()