-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiments.sh
executable file
·68 lines (54 loc) · 2.69 KB
/
run_experiments.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# -- Conventional --
python main.py --algorithm 0 --train data/train/ --test data/test/ --feat_extraction 1 2 3 4 5 6 --output results/svm
python main.py --algorithm 1 --train data/train/ --test data/test/ --feat_extraction 1 2 3 4 5 6 --features_exist 1 --output results/xgboost
# -- Deep Learning --
## -- CNN --
for k in 1 2 3
do
for enc in 0 1 2
do
for num_convs in 1 2 3 4
do
output="results/enc${enc}_cnn_${num_convs}conv_k${k}"
python main.py --train data/train/ --test data/test/ --epochs 100 --patience 20 --encoding ${enc} --k ${k} --num_convs ${num_convs} --activation 0 --batch_norm 1 --cnn_dropout 0.2 --num_lstm 0 --bidirectional 0 --lstm_dropout 0.2 --output ${output}
done
for concat in 1 2
do
for num_convs in 1 2 3 4
do
output="results/enc${enc}_cnn_${num_convs}conv_k${k}"
if [ "${concat}" -eq 1 ]; then
output="${output}_concat1_bio"
elif [ "${concat}" -eq 2 ]; then
output="${output}_concat2_bio"
fi
python main.py --train data/train/ --test data/test/ --epochs 100 --patience 20 --encoding ${enc} --concat ${concat} --k ${k} --feat_extraction 1 2 3 4 5 6 --features_exist 1 --num_convs ${num_convs} --activation 0 --batch_norm 1 --cnn_dropout 0.2 --num_lstm 0 --bidirectional 0 --lstm_dropout 0.2 --output ${output}
done
done
done
done
## -- CNN-BiLSTM --
for k in 1 2 3
do
for enc in 0 1 2
do
for num_convs in 1 2 3 4
do
output="results/enc${enc}_cnn_bilstm_${num_convs}conv_k${k}"
python main.py --train data/train/ --test data/test/ --epochs 100 --patience 20 --encoding ${enc} --k ${k} --num_convs ${num_convs} --activation 0 --batch_norm 1 --cnn_dropout 0.2 --num_lstm 1 --bidirectional 1 --lstm_dropout 0.2 --output ${output}
done
for concat in 1 2
do
for num_convs in 1 2 3 4
do
output="results/enc${enc}_cnn_bilstm_${num_convs}conv_k${k}"
if [ "${concat}" -eq 1 ]; then
output="${output}_concat1_bio"
elif [ "${concat}" -eq 2 ]; then
output="${output}_concat2_bio"
fi
python main.py --train data/train/ --test data/test/ --epochs 100 --patience 20 --encoding ${enc} --concat ${concat} --k ${k} --feat_extraction 1 2 3 4 5 6 --features_exist 1 --num_convs ${num_convs} --activation 0 --batch_norm 1 --cnn_dropout 0.2 --num_lstm 1 --bidirectional 1 --lstm_dropout 0.2 --output ${output}
done
done
done
done